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What we know from variational calculus
Consider an optimisation problem

J[x ] =

Z b

a
F (t, x(t), ẋ(t)) ! extr,

x = x(t) 2 C 1[a, b]; x(a) = A, x(b) = B

Fix x(t) and h(t), where h(a) = h(b) = 0.
Observe Taylor’s formula:

J[x + "h] = J[x ] + "�J[x ; h] +
1

2
"2�2J[x ; h] + o("2),

where we put

�J[x ; h] =
d

d"
J[x + "h]

�����
"=0

, �2J[x ; h] =
d2

d"2
J[x + "h]

�����
"=0
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If x is an extremum, then it is necessary that �J[x ; h] = 0 for all h.
After some machinery, the Euler-Lagrange equation is deduced

from this:

Fx �
d

dt
Fẋ = 0.

The Euler-Lagrange is a necessary condition, since it only implies

�J[x ; h] = 0. What about �2J[x ; h]?
There are a number of sufficient conditions for extremum in

variational calculus. Naturally they have to do something with

�2J[x ; h]: if it is positive for all h 6= 0, then x is a local minimum.

Today’s goal: study Legendre’s sufficient condition for a local

minimum.
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Legendre’s trick

Let’s calculate �2J explicitly.

d2

d"2
J[x + "h]

�����
"=0

=
d2

d"2

Z b

a
F (t, x + "h, ẋ + "ḣ)dt

=
d

d"

Z b

a
(Fxh + Fẋ ḣ)dt =

Z b

a
(Fxxh

2 + 2Fxẋhḣ + Fẋ ẋ ḣ
2)dt

Write
R b
a 2Fxẋhḣdt =

R b
a Fxẋd(h2) = �

R b
a

d
dtFxẋh

2dt and get

d2

d"2
J[x + "h]

�����
"=0

=

Z b

a
(Fxx �

d

dt
Fxẋ)h

2 + Fẋ ẋ ḣ
2dt

=

Z b

a
Pḣ2 + Qh2dt

Francis J. Narcowich Legendre’s sufficient condition of extremum



Variational Calculus Legendre’s trick Proof of local minimum

Legendre’s trick

Let’s calculate �2J explicitly.

d2

d"2
J[x + "h]

�����
"=0

=
d2

d"2

Z b

a
F (t, x + "h, ẋ + "ḣ)dt
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2)dt

Write
R b
a 2Fxẋhḣdt =
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Fxẋ)h

2 + Fẋ ẋ ḣ
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Consider arbitrary function w(t). Add
R b
a

d
dt (wh

2)dt, which is zero

by Fund. T. of Calculus, to the integral:

d2

d"2
J[x + "h]

�����
"=0

=

Z b

a
Pḣ2 + Qh2 +

d

dt
(wh2)dt

=

Z b

a
Pḣ2 + 2whḣ + (Q + ẇ)h2dt

Complete the square: Pḣ2 + 2whḣ = P(ḣ + w
P h)

2 � w2

P h2, so we

have

d2

d"2
J[x + "h]

�����
"=0

=

Z b

a
P(ḣ +

w

P
h)2 + (ẇ + Q � w2

P
)h2dt

Now assume P > 0 and ẇ + Q � w2

P = 0. If it is so, then trivially

�2J[x ; h] > 0 for all h. One might think that such w can always be

found, but that’s not true.
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P h)

2 � w2

P h2,

so we

have

d2

d"2
J[x + "h]

�����
"=0

=

Z b

a
P(ḣ +
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P h)

2 � w2

P h2, so we

have

d2

d"2
J[x + "h]

�����
"=0

=

Z b

a
P(ḣ +
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h)2 + (ẇ + Q � w2

P
)h2dt

Now assume P > 0 and ẇ + Q � w2
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Now consider this equation (Riccati’s equation):

ẇ + Q � w2

P
= 0

Substitute w = �(u̇/u)P to get Jacobi’s equation:

� d

dt

✓
P
du

dt

◆
+ Qu = 0

The central notion here is conjugate points:

Definition

t = ↵ and t = ↵̃ are said to be conjugate for Jacobi’s equation,

if there is a solution u for which u(↵) = u(↵̃) = 0 and u(x) 6= 0
between ↵ and ↵̃.
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ẇ + Q � w2

P
= 0

Substitute w = �(u̇/u)P to get Jacobi’s equation:

� d

dt

✓
P
du

dt

◆
+ Qu = 0

The central notion here is conjugate points:

Definition

t = ↵ and t = ↵̃ are said to be conjugate for Jacobi’s equation,

if there is a solution u for which u(↵) = u(↵̃) = 0 and u(x) 6= 0
between ↵ and ↵̃.

Francis J. Narcowich Legendre’s sufficient condition of extremum



Variational Calculus Legendre’s trick Proof of local minimum

Now consider this equation (Riccati’s equation):
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Variational Calculus Legendre’s trick Proof of local minimum

Suppose there are no conjugate points to a in the interval [a, b].
Then we can construct a strictly positive solution u as follows.

Let u0 and u1 be solutions to the Jacobi’s equation such that:

u0(a) = 0, u̇0(a) = 1, u1(a) = 1, u̇1(a) = 1.

Observe that u0 is positive on (a, b], and u1 is positive on some

segment [a, c) ⇢ [a, b], Then it is possible to choose a linear

combination m0u0 +m1u1 to be strictly positive on [a, b].

We have thus solved the Riccati equation ẇ +Q � w2

P = 0, and the

second variation becomes

�2J[x ; h] =

Z b

a
P
⇣
ḣ +

w

P
h
⌘2

dt

We assumed that P > 0 and h(a) = h(b) = 0. Can �2J[x ; h] = 0 for

some h 6= 0? No:

�2J = 0 () ḣ +
w

P
h = 0 () h = 0

under initial condition h(a) = 0.
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segment [a, c) ⇢ [a, b], Then it is possible to choose a linear

combination m0u0 +m1u1 to be strictly positive on [a, b].

We have thus solved the Riccati equation ẇ +Q � w2

P = 0, and the

second variation becomes

�2J[x ; h] =

Z b

a
P
⇣
ḣ +

w

P
h
⌘2

dt

We assumed that P > 0 and h(a) = h(b) = 0. Can �2J[x ; h] = 0 for

some h 6= 0? No:

�2J = 0 () ḣ +
w

P
h = 0 () h = 0

under initial condition h(a) = 0.Francis J. Narcowich Legendre’s sufficient condition of extremum
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Variational Calculus Legendre’s trick Proof of local minimum

We have arrived at the following result.

Theorem

If P > 0 and there are no conjugate points to a in [a, b], then
�2J[x ; h] > 0 for all non-zero h.

Note that it is not a sufficient condition for extremum yet. We need

something in the form of

�2J[x , h] � ckhk2C1[a,b].

This is due to Taylor’s formula:

J[x + h] = J[x ] + �J[x ; h] +
1

2
�2J[x ; h] + o(khk2).

It is achievable under our current assumptions: P > 0 and no

points conjugate to a. It just needs a little tweak.

Francis J. Narcowich Legendre’s sufficient condition of extremum
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Variational Calculus Legendre’s trick Proof of local minimum

Proof of local minimum
Take the second variation in one of the forms:

�2J[x ; h] =

Z b

a

⇣
Pḣ2 + 2whḣ + (ẇ + Q)h2

⌘
dt

Let 0 < � < minP be a constant. We add and subtract �ḣ2:

�2J[x ; h] =

Z b

a

⇣
(P � �)ḣ2 + 2whḣ + (ẇ + Q)h2

⌘
dt + �

Z b

a
ḣ2dt.

We then add
R b
a

d
dt (wh

2)dt = 0 and complete the square just the

same way as earlier. The result is only changed in P, which has

become P � �:

�2J[x ; h] =

Z b

a
(P � �)

✓
ḣ +

w

P � �
h

◆2

dt

+

Z b

a

✓
ẇ + Q � w2

P � �

◆
h2dt + �

Z b

a
ḣ2dt
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Variational Calculus Legendre’s trick Proof of local minimum

Continuing as earlier, we request

ẇ + Q � w2

P � �
= 0,

which with substitution w = �(u̇/u)P leads to a modified Jacobi

equation

� d

dt

✓
(P � �)

du

dt

◆
+ Qu = 0

We assumed that there were no conjugate points to a for the

original Jacobi equation � d
dt

�
P du

du

�
+ Qu = 0. Since this is a

question of solution existence, for small � there are no conjugate

points to a for the modified equation too. So we fix some small

enough �.
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Variational Calculus Legendre’s trick Proof of local minimum

Proceeding solving appropriately the Jacobi equation and thus the

Riccati equation, we nullify one of the terms in �2J, and so we get

�2J[x ; h] =

Z b

a
(P � �)

✓
ḣ +

w

P � �
h

◆2

+ �

Z b

a
ḣ2dt

� �

Z b

a
ḣ2dt.

We’re actually done here, since by Friedrichs’ inequality,

Z b

a
h2dt  (b � a)2

2

Z b

a
ḣ2dt

we have

khk2C1 =

Z b

a
h2dt+

Z b

a
ḣ2dt  C

Z b

a
ḣ2dt =) �2J[x ; h] � Ckhk2C1

Francis J. Narcowich Legendre’s sufficient condition of extremum
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