Exercise 7

Find the sides marked with letters in questions 1 to 11; all lengths are given in centimetres.

1.

2.

3.

4.

5.

6.

7.

8.

9. $\widehat{BAC} = \widehat{DBC}$

10.

11.

12. The photo shows a rectangular picture $16 \text{ cm} \times 8 \text{ cm}$ surrounded by a border of width 4 cm. Are the two rectangles similar?

- 13. The diagonals of a trapezium ABCD intersect at O. AB is parallel to DC, AB = 3 cm and DC = 6 cm. If CO = 4 cm and OB = 3 cm, find AO and DO.
- **14.** A tree of height 4 m casts a shadow of length 6.5 m. Find the height of a house casting a shadow 26 m long.
- **15.** Which of the following *must* be similar to each other?
 - a) two equilateral triangles

b) two rectangles

c) two isosceles triangles

d) two squares

e) two regular pentagons

f) two kites

g) two rhombuses

- h) two circles
- **16.** In the diagram $\widehat{ABC} = \widehat{ADB} = 90^{\circ}$, AD = p and DC = q.
 - a) Use similar triangles to show that $x^2 = pz$.
 - **b)** Find a similar expression for y^2 .
 - c) Add the expressions for x^2 and y^2 and hence prove Pythagoras' theorem.

- 17. In a triangle ABC, a line is drawn parallel to BC to meet AB at D and AC at E. DC and BE meet at X. Prove that:
 - a) the triangles ADE and ABC are similar
 - b) the triangles DXE and BXC are similar
 - c) $\frac{AD}{AB} = \frac{EX}{XB}$
- **18.** From the rectangle ABCD a square is cut off to leave rectangle BCEF. Rectangle BCEF is similar to ABCD. Find *x* and hence state the ratio of the sides of rectangle ABCD.

ABCD is called the Golden Rectangle and is an important shape in architecture.