

Linux Device Drivers Development

Develop customized drivers for embedded Linux

John Madieu

BIRMINGHAM - MUMBAI

Linux Device Drivers Development

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1111017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78528-000-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
John Madieu

Copy Editors
Juliana Nair
Safis Editing

Reviewer
Jérôme Pouiller

Project Coordinator
Judie Jose

Commissioning Editor
Gebin George

Proofreader
Safis Editing

Acquisition Editor
Gebin George

Indexer
Rekha Nair

Content Development Editor
Devika Battike

Graphics
Kirk D'Penha

Technical Editor
Swathy Mohan

Production Coordinator
Arvindkumar Gupta

About the Author
John Madieu is an embedded Linux and kernel engineer living in France, in Paris. His main
activities consist of developing drivers and Board Support Packages (BSP) for companies in
domains such as automation, transport, healthcare, energy, and the military. John works at
EXPEMB, a French company that is a pioneer in electronical board design based on
computer-on-module, and in embedded Linux solutions. He is an open source and
embedded systems enthusiast, convinced that it is only by sharing knowledge that one
learns more.

He is passionate about boxing, which he practised for 6 years professionally, and continues
to transmit this passion through sessions of training that he provides voluntarily.

I would like to thank Devika Battike, Gebin George, and all the Packt team for their efforts
to release this book on time. They are the people without whom this book would probably
never have seen the light of day. It was a pleasure to work with them.

Finally, I would like to thank all the mentors I have had over the years, and who still
continue to accompany me. Mentors such as Cyprien Pacôme Nguefack for his
programming skills that I have learned over the years, Jérôme Pouillier and Christophe
Nowicki for introducing me buildroot and leading me to kernel programming, Jean-
Christian Rerat and Jean-Philippe DU-Teil of EXPEMB for their coaching and
accompaniment in my professional career; to all those I could not mention, I wish to thank
them for having transmitted these connoises to me, which I have tried to disseminate
through this book.

About the Reviewer
Jérôme Pouiller is a true geek and fascinated by understanding how things do work.

He was an early adopter of Linux. He found in Linux a system with no limits, where
everything could be changed. Linux has provided an excellent platform to hack anything.

He graduated in machine learning at Ecole Pour l’Informatique et les Technologies
Avancées (EPITA). Beside his studies, he learned electronics by himself. He quickly turned
his attention to the piece of software at crossroad of all advanced systems: the operating
system. It is now one of his favorite subjects.

For 15 years now, Jérôme Pouiller has designed (and often debugged) Linux firmware for a
variety of industries (multimedia, healthcare, nuclear, military).

In addition to his consulting activities, Jérôme Pouiler is professor of operating systems at
Institut National des Sciences Appliquées (INSA). He has written many course materials
about system programming, operating system design, realtime systems, and more.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1785280007.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785280007

I would like to thank my girlfriend for her support and all the sleepless nights
accompanying the writing of this book, as well as Brigitte and François, my dear parents,
for whom I have a thought and to whom I dedicate this book entirely.

- John Madieu

I would like to dedicate this book in the memory of my father, who left too.

- Jérôme Pouiller

Table of Contents
Preface 1

Chapter 1: Introduction to Kernel Development 8

Environment setup 9
Getting the sources 9

Source organization 10
Kernel configuration 11
Build your kernel 12

Kernel habits 13
Coding style 13
Kernel structures allocation/initialization 14
Classes, objects, and OOP 15

Summary 16

Chapter 2: Device Driver Basis 17

User space and kernel space 18
The concept of modules 19
Module dependencies 19

depmod utility 19
Module loading and unloading 20

Manual loading 20
modprobe and insmod 20
/etc/modules-load.d/<filename>.conf 20

Auto-loading 21
Module unload 21

Driver skeletons 22
Module entry and exit point 23

__init and __exit attributes 23
Module information 25

Licensing 27
Module author(s) 28
Module description 29

Errors and message printing 29
Error handling 29
Handling null pointer errors 32
Message printing – printk() 33

Module parameters 35
Building your first module 37

[ii]

The module's makefile 37
In the kernel tree 39
Out of the tree 42
Building the module 42

Summary 43

Chapter 3: Kernel Facilities and Helper Functions 44

Understanding container_of macro 44
Linked lists 47

Creating and initializing the list 48
Dynamic method 48
Static method 49

Creating a list node 49
Adding a list node 50
Deleting a node from the list 51
Linked list traversal 51

Kernel sleeping mechanism 52
Wait queue 52

Delay and timer management 55
Standard timers 56

Jiffies and HZ 56
Timers API 56

Timer setup initialization 57
Standard timer example 58

High resolution timers (HRTs) 59
HRT API 59

HRT setup initialization 59
Dynamic tick/tickless kernel 61
Delays and sleep in the kernel 61

Atomic context 61
Nonatomic context 62

Kernel locking mechanism 62
Mutex 63

Mutex API 63
Declare 63
Acquire and release 64

Spinlock 65
Spinlock versus mutexes 67

Work deferring mechanism 67
Softirqs and ksoftirqd 67

ksoftirqd 68
Tasklets 69

Declaring a tasklet 69

[iii]

Enabling and disabling a tasklet 70
Tasklet scheduling 70
Work queues 72

Kernel-global workqueue – the shared queue 72
Dedicated work queue 75

Programming syntax 75
Predefined (shared) workqueue and standard workqueue functions 78

Kernel threads 79
Kernel interruption mechanism 79

Registering an interrupt handler 79
Interrupt handler and lock 82

Concept of bottom halves 83
The problem – interrupt handler design limitations 83
The solution – bottom halves 83
Tasklets as bottom halves 84
Workqueue as bottom halves 85
Softirqs as bottom half 86

Threaded IRQs 86
Threaded bottom half 88

Invoking user-space applications from the kernel 89
Summary 90

Chapter 4: Character Device Drivers 91

The concept behind major and minor 92
Device number allocation and freeing 93

Introduction to device file operations 94
File representation in the kernel 95

Allocating and registering a character device 97
Writing file operations 98

Exchanging data between kernel space and user space 98
A single value copy 99

The open method 100
Per-device data 100

The release method 101
The write method 102

Steps to write 102
The read method 104

Steps to read 105
The llseek method 106

Steps to llseek 107
The poll method 108

Steps to poll 109
The ioctl method 112

[iv]

Generating ioctl numbers (command) 113
Steps for ioctl 114

Filling the file_operations structure 116
Summary 116

Chapter 5: Platform Device Drivers 117

Platform drivers 118
Platform devices 122

Resources and platform data 122
Device provisioning - the old and depreciated way 122

Resources 123
Platform data 125
Where to declare platform devices? 127

Device provisioning - the new and recommended way 127
Devices, drivers, and bus matching 128

How can platform devices and platform drivers match? 130
Kernel devices and drivers-matching function 131

OF style and ACPI match 132
ID table matching 132
Name matching - platform device name matching 136

Summary 136

Chapter 6: The Concept of Device Tree 137

Device tree mechanism 137
Naming convention 138
Aliases, labels, and phandle 139
DT compiler 140

Representing and addressing devices 141
SPI and I2C addressing 141
Platform device addressing 143

Handling resources 144
Concept of named resources 145
Accessing registers 146
Handling interrupts 147

The interrupt handler 147
Interrupt controller code 148

Extract application-specific data 149
Text string 149
Cells and unsigned 32-bit integers 150
Boolean 151
Extract and parse sub-nodes 151

Platform drivers and DT 152
OF match style 152

Dealing with non-device tree platforms 155

[v]

Support multiple hardware with per device-specific data 156
Match style mixing 158

Platform resources and DT 160
Platform data versus DT 162

Summary 163

Chapter 7: I2C Client Drivers 164

The driver architecture 165
The i2c_driver structure 165

The probe() function 166
Per-device data 167

The remove() function 168
Driver initialization and registration 169
Driver and device provisioning 169

Accessing the client 170
Plain I2C communication 170
System Management Bus (SMBus) compatible functions 172
Instantiating I2C devices in the board configuration file (old and
depreciated way) 173

I2C and the device tree 174
Defining and registering the I2C driver 175

Remark 176
Instantiating I2C devices in the device tree - the new way 177
Putting it all together 177

Summary 178

Chapter 8: SPI Device Drivers 179

The driver architecture 180
The device structure 180
spi_driver structure 183

The probe() function 183
Per-device data 184

The remove() function 185
Driver initialization and registration 185
Driver and devices provisioning 186

Instantiate SPI devices in board configuration file – old and depreciated way 187
SPI and device tree 188

Instantiate SPI devices in device tree - the new way 190
Define and register SPI driver 190

Accessing and talking to the client 191
Putting it all together 196
SPI user mode driver 196

With IOCTL 198

[vi]

Summary 201

Chapter 9: Regmap API – A Register Map Abstraction 202

Programming with the regmap API 203
regmap_config structure 204
regmap initialization 207

SPI initialization 207
I2C initialization 208

Device access functions 209
regmap_update_bits function 210
Special regmap_multi_reg_write function 211
Other device access functions 212

regmap and cache 212
Putting it all together 214
A regmap example 214

Summary 217

Chapter 10: IIO Framework 218

IIO data structures 220
iio_dev structure 220
iio_info structure 224
IIO channels 225

Channel attribute naming conventions 227
Distinguishing channels 229

Putting it all together 231
Triggered buffer support 234

IIO trigger and sysfs (user space) 238
Sysfs trigger interface 238

add_trigger file 238
remove_trigger file 239
Tying a device with a trigger 239

The interrupt trigger interface 239
The hrtimer trigger interface 240

IIO buffers 241
IIO buffer sysfs interface 241
IIO buffer setup 242

Putting it all together 244
IIO data access 250

One-shot capture 251
Buffer data access 251

Capturing using the sysfs trigger 251
Capturing using the hrtimer trigger 253

IIO tools 254

[vii]

Summary 254

Chapter 11: Kernel Memory Management 255

System memory layout - kernel space and user space 257
Kernel addresses – concept of low and high memory 259

Low memory 260
High memory 260

User space addresses 261
Virtual Memory Area (VMA) 264

Address translation and MMU 266
Page look up and TLB 272

How does TLB work 272
Memory allocation mechanism 274

Page allocator 275
Page allocation API 275
Conversion functions 277

Slab allocator 278
The buddy algorithm 278
A journey into the slab allocator 281

kmalloc family allocation 283
vmalloc allocator 286
Process memory allocation under the hood 288

The copy-on-write (CoW) case 289
Work with I/O memory to talk with hardware 290

PIO devices access 290
MMIO devices access 291

__iomem cookie 292
Memory (re)mapping 294

kmap 294
Mapping kernel memory to user space 295

Using remap_pfn_range 295
Using io_remap_pfn_range 297
The mmap file operation 297

Implementing mmap in the kernel 299
Linux caching system 300

What is a cache? 300
CPU cache – memory caching 301
The Linux page cache – disk caching 302
Specialized caches (user space caching) 302

Why delay writing data to disk? 302
Write caching strategies 303

The flusher threads 304
Device-managed resources – Devres 304

[viii]

Summary 306

Chapter 12: DMA – Direct Memory Access 307

Setting up DMA mappings 308
Cache coherency and DMA 308
DMA mappings 309

Coherent mapping 309
Streaming DMA mapping 310

Single buffer mapping 311
Scatter/gather mapping 311

Concept of completion 314
DMA engine API 316

Allocate a DMA slave channel 317
Set slave and controller specific parameters 318
Get a descriptor for transaction 321
Submit the transaction 322
Issue pending DMA requests and wait for callback notification 323

Putting it all together – NXP SDMA (i.MX6) 324
DMA DT binding 329

Consumer binding 329
Summary 331

Chapter 13: Linux Device Model 332

LDM data structures 333
The bus 333

Bus registration 338
Device driver 339

Device driver registration 340
Device 341

Device registration 342
Deep inside LDM 343

kobject structure 343
kobj_type 345
ksets 347
Attribute 348

Attributes group 349
Device model and sysfs 350

Sysfs files and attributes 352
Current interfaces 353

Device attributes 353
Bus attributes 355
Device drivers attributes 356
Class attributes 357

[ix]

Allow sysfs attribute files to be pollable 358
Summary 360

Chapter 14: Pin Control and GPIO Subsystem 361

Pin control subsystem 361
Pinctrl and the device tree 362

The GPIO subsystem 366
The integer-based GPIO interface: legacy 367

Claiming and configuring the GPIO 367
Accessing the GPIO – getting/setting the value 368

In atomic context 369
In a non-atomic context (that may sleep) 369

GPIOs mapped to IRQ 369
Putting it all together 370

The descriptor-based GPIO interface: the new and recommended way 372
GPIO descriptor mapping - the device tree 373
Allocating and using GPIO 374
Putting it all together 376

The GPIO interface and the device tree 379
The legacy integer-based interface and device tree 380
GPIO mapping to IRQ in the device tree 383

GPIO and sysfs 384
Exporting a GPIO from kernel code 386

Summary 387

Chapter 15: GPIO Controller Drivers – gpio_chip 388

Driver architecture and data structures 388
Pin controller guideline 393
Sysfs interface for GPIO controller 393
GPIO controllers and DT 394
Summary 394

Chapter 16: Advanced IRQ Management 395

Multiplexing interrupts and interrupt controllers 398
Advanced peripheral IRQs management 407
Interrupt request and propagation 410

Chaining IRQ 411
Chained interrupts 411
Nested interrupts 412

Case study – GPIO and IRQ chip 412
Legacy GPIO and IRQ chip 413
New gpiolib irqchip API 415
Interrupt controller and DT 417

Summary 418

[x]

Chapter 17: Input Devices Drivers 419

Input device structures 419
Allocating and registering an input device 422

Polled input device sub-class 423
Generating and reporting an input event 427
User space interface 429
Putting it all together 431

Driver examples 433
Summary 439

Chapter 18: RTC Drivers 440

RTC framework data structures 441
RTC API 443

Reading and setting time 444
Driver example 447

Playing with alarms 448
RTCs and user space 451

The sysfs interface 452
The hwclock utility 453

Summary 453

Chapter 19: PWM Drivers 454

PWM controller driver 456
Driver example 458
PWM controller binding 461

PWM consumer interface 462
PWM clients binding 464

Using PWMs with the sysfs interface 466
Summary 468

Chapter 20: Regulator Framework 469

PMIC/producer driver interface 470
Driver data structures 470

Description structure 471
Constraints structure 472
init data structure 473

Feeding init data into a board file 474
Feeding init data into the DT 475

Configuration structure 477
Device operation structure 477

Driver methods 478
Probe function 479
Remove function 480

[xi]

Case study: Intersil ISL6271A voltage regulator 480
Driver example 485

Regulators consumer interface 489
Regulator device requesting 490
Controlling the regulator device 491

Regulator output enable and disable 491
Voltage control and status 492
Current limit control and status 492
Operating mode control and status 493

Regulator binding 493
Summary 494

Chapter 21: Framebuffer Drivers 495

Driver data structures 496
Device methods 500
Driver methods 502

Detailed fb_ops 504
Checking information 505
Set controller's parameters 506
Screen blanking 507
Accelerated methods 508

Putting it all together 509
Framebuffer from user space 509
Summary 512

Chapter 22: Network Interface Card Drivers 513

Driver data structures 514
The socket buffer structure 514

Socket buffer allocation 516
Network interface structure 517

The device methods 519
Opening and closing 521
Packet handling 523

Packet reception 523
Packet transmission 526

Driver example 529
Status and control 532

The interrupt handler 532
Ethtool support 534

Driver methods 535
The probe function 536
Module unloading 538

Summary 538

[xii]

Index 539

Preface
The Linux kernel is a complex, portable, modular, and widely used piece of software,
running on around 80% of servers and embedded systems in more than half of the devices
throughout the world. Device drivers play a critical role in the context of how well a Linux
system performs. As Linux has turned out to be one of the most popular operating systems
interest in developing personal device drivers is also increasing steadily.

A device driver is the link between the user space and devices, through the kernel.

This book will begins with two chapters that will help you understand the basics of drivers
and prepare you for the long journey through the Linux kernel. This book will then cover
driver development based on Linux subsystems such as memory management, PWM, RTC,
IIO, GPIO, IRQ management. The book will also cover practical approach to direct memory
access and network device drivers.

Source code in this book has been tested on both x86 PC and UDOO Quad from SECO,
which is based on an ARM i.MX6 from NXP, with enough features and connections to allow
us to cover all of tests discussed in the book. Some drivers are also provided for testing
purposes for inexpensive components such as MCP23016 and 24LC512, which are I2C GPIO
controller and eeprom memory respectively.

By the end of this book, you will be comfortable with the concept of device driver
development and will be in a position to write any device driver from scratch using the
latest kernel version (v4.13 at the time of writing).

What this book covers
Chapter 1, Introduction to Kernel Development, introduces the Linux kernel development
process. The chapter will discuss the downloading, configuring, and compiling steps of a
kernel, as well for x86 as for ARM-based systems

Chapter 2, Device Driver Basis, deals with Linux modularity by means of kernel modules,
and describes their loading/unloading. It also describe a driver architecture and some basic
concepts and some kernel best practices.

Chapter 3, Kernel Facilities and Helper Functions, walks through frequently used kernel
functions and mechanisms, such as work queue, wait queue, mutexes, spinlock, and any
other facilities that are useful for improved driver reliability.

Preface

[2]

Chapter 4, Character Device Drivers, focuses exporting a devices functionalities to the user
space by means of character devices as well as supporting custom commands using the
IOCTL interface.

Chapter 5, Platform Device Drivers, explains what a platform device is and introduces the
concept of pseudo-platform bus, as well as the device and bus matching mechanism. This
chapter describes platform driver architecture in a general manner, and how to handle
platform data.

Chapter 6, The Concept of Device Tree, discusses the mechanism to feed device descriptions
to the kernel. This chapter explains device addressing, resource handling, every data type
supported in DT and their kernel APIs.

Chapter 7, I2C Client Drivers, dives into I2C device drivers architecture, the data structures
and device addressing and accessing methods on the bus.

Chapter 8, SPI Device Drivers, describe SPI-based device driver architecture, as well as the
data structures involved. The chapter discuss each device's access method and specificities,
as well as traps one should avoid. SPI DT binding is discussed too.

Chapter 9, Regmap API – A Register Map Abstraction, provides an overview of the regmap
API, and how it abstracts the underlying SPI and I2C transaction. This chapter describes the
generic API, as well as the dedicated API.

Chapter 10, IIO framework, introduce the kernel data acquisition and measurement
framework, to handle Digital to Analog Converters (DACs) and Analog to Digital
Converters (ADCs). This walk through the IIO API, deals with triggered buffers and
continuous data capture, and looks at single channel acquisition through the sysfs interface.

Chapter 11, Kernel Memory Management, first introduces the concept of virtual memory, in
order to describe the whole kernel memory layout. This chapter walks through the kernel
memory management subsystem, discussing memory allocation and mapping, their APIs
and all devices involved in such mechanisms, as well as kernel caching mechanism.

Chapter 12, DMA – Direct Memory Access, introduce DMA and its new kernel API: the
DMA Engine API. This chapter will talk about different DMA mappings and describes how
to address cache coherency issues. In addition, the chapter summarize the whole concepts
in use cases, based on i.MX6 SoC, from NXP.

Chapter 13, Linux Device Model, provides an overview of the heart of Linux, describing how
objects are represented in the kernel, and how Linux is designed under the hood in a
general manner, starting from kobject to devices, through buses, classes, and device drivers.
This chapter also highlight sometime unknown side in user space, the kernel object

Preface

[3]

hierarchy in sysfs.

Chapter 14, Pin Control and GPIO Subsystem, describes the kernel pincontrol API and
GPIOLIB, which is the kernel API to handle GPIO. This chapter also discusses the old and
deprecated integer-based GPIO interface, as well as the descriptor-based interface, which is
the new one, and finally, the way they can be configured from within the DT.

Chapter 15, GPIO Controller Drivers – gpio_chip, necessary elements to write such device
drivers. That says, its main data structure is struct gpio_chip. This structure is explained in
detail in this chapter, along with a full and working driver provided in the source of the
book.

Chapter 16, Advanced IRQ Management, demystifies the Linux IRQ core. This chapter walks
through Linux IRQ management, starting from interrupt propagation over the system and
moving to interrupt controller drivers, thus explaining the concept of IRQ multiplexing,
using the Linux IRQ domain API

Chapter 17, Input Devices Drivers, provides a global view of input subsystems, dealing with
both IRQ-based and polled input devices, and introducing both APIs. This chapter explains
and shows how user space code deals with such devices.

Chapter 18, RTC Drivers, walks through and demystifies the RTC subsystem and its API.
This chapter goes far enough and explains how to deal with alarms from within RTC
drivers

Chapter 19, PWM Drivers, provides a full description of the PWM framework, talking
about the controller side API as well the consumer side API. PWM management from the
user space is discussed in the last section in this chapter.

Chapter 20, Regulator Framework, highlights how important power management is. The first
part of the chapter deals with Power Management IC (PMIC) and explains its driver design
and API. The second part focuses on the consumer side, talking about requesting and using
regulators.

Chapter 21, Framebuffer Drivers, explains framebuffer concept and how it works. It also
shows how to design framebuffer drivers, walks through its API, and discusses accelerated
as well as non-accelerated methods. This chapter shows how drivers can expose
framebuffer memory so that user space can write into, without worrying about underlying
tasks.

Chapter 22, Network Interface Card Drivers, walk through the NIC driver’s architecture and
their data structures, thus showing you how to handle device configuration, data transfer,
and socket buffers.

Preface

[4]

What you need for this book
This book assumes a medium level of understanding the Linux operating system, basic
knowledge of C programming (at least pointer handling). That is all. If additional skill is
required for a given chapter, links on document reference will be provided to readers to
quickly learn these skills.

Linux kernel compiling is a quite long and heavy task. The minimum hardware or virtual
requirements are as the follows:

CPU: 4 cores
Memory: 4 GB RAM
Free disk space: 5 GB (large enough)

In this book, you will need the following software list:

Linux operating system: preferably a Debian-based distribution, which is used
for example in the book (Ubuntu 16.04)
At least version 5 of both gcc and gcc-arm-linux (as used in the book)

Other necessary packages are described in dedicated chapter in the book. Internet
connectivity is required for kernel sources downloading.

Who this book is for
To make usage of the content of this book, a basic prior knowledge of C programming and
basics Linux commands is expected. This book covers Linux drivers development for
widely used embedded devices, using the kernel version v4.1, and covers changes until the
last version at the time of writing this book (v4.13). This book is essentially intended for
embedded engineers, Linux system administrators, developer, and kernel hackers. Whether
you are a software developer, a system architect, or maker willing to dive into Linux driver
development, this book is for you.

Preface

[5]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
.name field must be the same as the device's name you give when you register the device in
the board specific file".

A block of code is set as follows:

#include <linux/of.h>

#include <linux/of_device.h>

Any command-line input or output is written as follows:

 sudo apt-get update
 sudo apt-get install linux-headers-$(uname -r)

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/​/​www.​packtpub.
com/​support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Linux-​Device-​Drivers-​Development. We also have other code bundles
from our rich catalog of books and videos available at https:/​/​github.​com/
PacktPublishing/​. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/​/​www.​packtpub.​com/​sites/​default/​files/
downloads/​LinuxDeviceDriversDevelopment_​ColorImages.​pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/Linux-Device-Drivers-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LinuxDeviceDriversDevelopment_ColorImages.pdf

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/​/​www.​packtpub.​com/​submit-​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/​/​www.​packtpub.​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Introduction to Kernel

Development
Linux started as a hobby project in 1991 for a Finnish student, Linus Torvalds. The project
has gradually grown and still does, with roughly 1000 contributors around the world.
Nowadays, Linux is a must, in embedded systems as well as on servers. A kernel is a center
part of an operating system, and its development is not so obvious.

Linux offers many advantages over other operating systems:

It is free of charge
Well documented with a large community
Portable across different platforms
Provides access to the source code
Lots of free open source software

This book tries to be as generic as possible. There is a special topic, device tree, which is not
a full x86 feature yet. That topic will then be dedicated to ARM processors, and all those
fully supporting the device tree. Why those architectures? Because they are most used on
the desktop and servers (for x86) and on embedded systems (ARM).

This chapter deals among others with:

Development environment setup
Getting, configure, and build kernel sources
Kernel source code organization
Introduction to kernel coding style

Introduction to Kernel Development

[9]

Environment setup
Before one starts any development, you need to set an environment up. The environment
dedicated to Linux development is quite simple, at least, on Debian based systems:

 $ sudo apt-get update
 $ sudo apt-get install gawk wget git diffstat unzip texinfo \
 gcc-multilib build-essential chrpath socat libsdl1.2-dev \
 xterm ncurses-dev lzop

There are parts of codes in this book that are compatible with ARM system on chip (SoC).
One should install gcc-arm as well:

 sudo apt-get install gcc-arm-linux-gnueabihf

I'm running Ubuntu 16.04, on an ASUS RoG, with an Intel core i7 (8 physical cores), 16 GB
of RAM, 256 GB of SSD, and 1 TB of magnetic hard drive. My favorite editor is Vim, but
you are free to use the one you are most comfortable with.

Getting the sources
In the early kernel days (until 2003), odd–even versioning styles were used; where odd
numbers were stable, even numbers were unstable. When the 2.6 version was released, the
versioning scheme switched to X.Y.Z, where:

X: This was the actual kernel's version, also called major, it incremented when
there were backwards-incompatible API changes
Y: This was the minor revision, it incremented after adding a functionality in a
backwards-compatible manner
Z: This is also called PATCH, represented the version relative to bug fixes

This is called semantic versioning, and has been used until the 2.6.39 version; when Linus
Torvalds decided to bump the version to 3.0, which also meant the end of semantic
versioning in 2011, and then, an X.Y scheme was adopted.

When it came to the 3.20 version, Linus argued that he could no longer increase Y, and
decided to switch to an arbitrary versioning scheme, incrementing X whenever Y got large
enough that he ran out of fingers and toes to count it. This is the reason why the version has
moved from 3.20 to 4.0 directly. Have a look at:
https://plus.google.com/+LinusTorvalds/posts/jmtzzLiiejc.

https://plus.google.com/+LinusTorvalds/posts/jmtzzLiiejc

Introduction to Kernel Development

[10]

Now the kernel uses an arbitrary X.Y versioning scheme, which has nothing to do with
semantic versioning.

Source organization
For the needs of this book, you must use Linus Torvald's Github repository.

 git clone https://github.com/torvalds/linux
 git checkout v4.1
 ls

arch/: The Linux kernel is a fast growing project that supports more and more
architectures. That being said, the kernel wants to be as generic as possible.
Architecture specific code is separated from the rest, and falls in this directory.
This directory contains processor-specific subdirectories such as alpha/, arm/,
mips/, blackfin/, and so on.
block/: This directory contains codes for block storage devices, actually the
scheduling algorithm.
crypto/: This directory contains the cryptographic API and the encryption
algorithms code.
Documentation/: This should be your favorite directory. It contains the
descriptions of APIs used for different kernel frameworks and subsystems. You
should look here prior to asking any questions on forums.
drivers/: This is the heaviest directory, continuously growing as device drivers
get merged. It contains every device driver organized in various subdirectories.
fs/: This directory contains the implementation of different filesystems that the
kernel actually supports, such as NTFS, FAT, ETX{2,3,4}, sysfs, procfs, NFS, and
so on.
include/: This contains kernel header files.
init/: This directory contains the initialization and start up code.
ipc/: This contains implementation of the Inter-Process Communication (IPC)
mechanisms, such as message queues, semaphores, and shared memory.
kernel/: This directory contains architecture-independent portions of the base
kernel.
lib/: Library routines and some helper functions live here. They are: generic
kernel object (kobject) handlers and Cyclic Redundancy Code (CRC)
computation functions, and so on.

Introduction to Kernel Development

[11]

mm/: This contains memory management code.
net/: This contains networking (whatever network type it is) protocols code.
scripts/: This contains scripts and tools used during the kernel development.
There are other useful tools here.
security/: This directory contains the security framework code.
sound/: Audio subsystems codes fall here.
usr/: This currently contains the initramfs implementation.

The kernel must remain portable. Any architecture-specific code should be located in the
arch directory. Of course, the kernel code related to user space API does not change
(system calls, /proc, /sys), as it would break the existing programs.

The book deals with version 4.1 of the kernel. Therefore, any changes
made until v4.11 version are covered too, at least this can be said about the
frameworks and subsystems.

Kernel configuration
The Linux kernel is a makefile-based project, with 1000s of options and drivers. To
configure your kernel, either use make menuconfig for an ncurse-based interface or make
xconfig for an X-based interface. Once chosen, options will be stored in a .config file, at
the root of the source tree.

In most of the cases, there will be no need to start a configuration from scratch. There are
default and useful configuration files available in each arch directory, which you can use as
a start point:

 ls arch/<you_arch>/configs/

For ARM-based CPUs, these configs files are located in arch/arm/configs/, and for an
i.MX6 processor, the default file config is arch/arm/configs/imx_v6_v7_defconfig.
Similarly for x86 processors, we find the files in arch/x86/configs/, with only two
default configuration files, i386_defconfig and x86_64_defconfig, for 32 and 64 bits
versions respectively. It is quite straightforward for an x86 system:

make x86_64_defconfig
make zImage -j16
make modules
makeINSTALL_MOD_PATH </where/to/install> modules_install

Introduction to Kernel Development

[12]

Given an i.MX6-based board, one can start with ARCH=arm make imx_v6_v7_defconfig,
and then ARCH=arm make menuconfig. With the former command, you will store the
default option in .config file, and with the latter, you can update add/remove options,
depending on the needs.

One may run into a Qt4 error with xconfig. In such a case, one should just use the
following command:

sudo apt-get install qt4-dev-tools qt4-qmake

Build your kernel
Building the kernel requires you to specify the architecture for which it is built for, as well
as the compiler. That says, it is not necessary for a native build.

ARCH=arm make imx_v6_v7_defconfig
ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make zImage -j16

After that, one will see something like:

 [...]
 LZO arch/arm/boot/compressed/piggy_data
 CC arch/arm/boot/compressed/misc.o
 CC arch/arm/boot/compressed/decompress.o
 CC arch/arm/boot/compressed/string.o
 SHIPPED arch/arm/boot/compressed/hyp-stub.S
 SHIPPED arch/arm/boot/compressed/lib1funcs.S
 SHIPPED arch/arm/boot/compressed/ashldi3.S
 SHIPPED arch/arm/boot/compressed/bswapsdi2.S
 AS arch/arm/boot/compressed/hyp-stub.o
 AS arch/arm/boot/compressed/lib1funcs.o
 AS arch/arm/boot/compressed/ashldi3.o
 AS arch/arm/boot/compressed/bswapsdi2.o
 AS arch/arm/boot/compressed/piggy.o
 LD arch/arm/boot/compressed/vmlinux
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready

From the kernel build, the result will be a single binary image, located in arch/arm/boot/.
Modules are built with the following command:

 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make modules

You can install them using the following command:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make modules_install

Introduction to Kernel Development

[13]

The modules_install target expects an environment variable, INSTALL_MOD_PATH,
which specifies where you should install the modules. If not set, the modules will be
installed at /lib/modules/$(KERNELRELEASE)/kernel/. This is discussed in Chapter 2,
Device Driver Basis.

i.MX6 processors support device trees, which are files you use to describe the hardware
(this is discussed in detail in Chapter 6, The Concept of Device Tree). However, to compile
every ARCH device tree, you can run the following command:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make dtbs

However, the dtbs option is not available on all platforms that support device tree. To
build a standalone DTB, you should use:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make imx6d- sabrelite.dtb

Kernel habits
The kernel code tries to follow standard rules through its evolution. In this chapter, we will
just be introduced to them. They are all discussed in a dedicated chapter, starting from
Chapter 3, Kernel Facilities and Helper Functions, we get a better overview of the kernel
development process and tips, till Chapter 13, Linux Device Model.

Coding style
Before going deep in this section, you should always refer to the kernel coding style
manual, at Documentation/CodingStyle in the kernel source tree. This coding style is a
set of rules you should respect, at least if you need to get its patches accepted by kernel
developers. Some of these rules concern indentation, program flow, naming convention,
and so on.

Most popular ones are:

Always use tab indentation of 8 characters, and the line should be 80 columns
long. If the indentation prevents you from writing your function, it is because this
one has too many nesting levels. One can size the tabs and verify the line size
using scripts/cleanfile script in from the kernel source:

scripts/cleanfile my_module.c

Introduction to Kernel Development

[14]

You can also indent the code correctly using the indent tool:

 sudo apt-get install indent
 scripts/Lindent my_module.c

Every function/variable that is not exported should be declared as static.
No spaces should be added around (inside) parenthesized expressions. s = size of
(struct file); is accepted, whereas s = size of(struct file); is not.
Using typdefs is forbidden.
Always use /* this */ comment style, not // this

BAD: // do not use this please
GOOD: /* Kernel developers like this */

You should capitalise macros, but functional macros can be in lowercase.
A comment should not replace a code that is not illegible. Prefer rewriting the
code rather than adding a comment.

Kernel structures allocation/initialization
The kernel always offers two possible allocation mechanisms for its data structures and
facilities.

Some of these structures are:

Workqueue
List
Waitqueue
Tasklet
Timer
Completion
mutex
spinlock

Dynamical initializers are all macros it means they are always capitalized:
INIT_LIST_HEAD(), DECLARE_WAIT_QUEUE_HEAD(), DECLARE_TASKLET(), and so on.

Introduction to Kernel Development

[15]

That being said, these are all discussed in Chapter 3, Kernel Facilities and Helper Functions.
Therefore, data structures that represent framework devices are always allocated
dynamically, each of which having its own allocation and deallocation API. These
framework device types are:

Network
Input device
Char device
IIO device
Class
Framebuffer
Regulator
PWM device
RTC

Scope of the static objects is visible in the whole driver, and by every device this driver
manages. Dynamically allocated objects are visible only by the device that is actually using
a given instance of the module.

Classes, objects, and OOP
The kernel implements OOP by means of a device and a class. Kernel subsystems are
abstracted by means of classes. There are almost as many subsystems as there are
directories under /sys/class/. The struct kobject structure is the center piece of this
implementation. It even brings in a reference counter, so that the kernel may know how
many users actually use the object. Every object has a parent, and has an entry in sysfs (if
mounted).

Every device that falls into a given subsystem has a pointer to an operations (ops) structure,
which exposes operations that can be executed on this device.

Introduction to Kernel Development

[16]

Summary
This chapter explained in a very short and simple manner how you should download the
Linux source and process a first build. It also deals with some common concepts. That said,
this chapter is quite brief and may not be enough, but never mind, it is just an introduction.
That is why the next chapter gets more into the details of the kernel building process, how
to actually compile a driver, either externally or as a part of the kernel, as well as some
basics that one should learn before starting the long journey that kernel development
represents.

2
Device Driver Basis

A driver is a piece of software whose aim is to control and manage a particular hardware
device; hence the name device driver. From an operating system point of view, it can be
either in the kernel space (running in privileged mode) or in the user space (with lower
privilege). This book only deals with kernel space drivers, especially Linux kernel drivers.
Our definition is a device driver exposes the functionality of the hardware to user
programs.

This book's aim is not to teach you how to become a Linux guru—I'm not even one at
all—but there are some concepts you should understand prior to writing a device driver. C
programming skills are mandatory; you should be at least familiar with pointers. You
should also be familiar with some of the manipulating functions. Some hardware skills are
required too. So this chapter essentially discusses:

Module building processes, as well as their loading and unloading
Driver skeletons, and debugging message management
Error handling in the driver

Device Driver Basis

[18]

User space and kernel space
The concept of kernel space and user space is a bit abstract. It is all about memory and
access rights. One may consider the kernel to be privileged, whereas the user apps are
restricted. It is a feature of a modern CPU, allowing it to operate either in privileged or
unprivileged mode. This concept will be clearer to you in Chapter 11, Kernel Memory
Management.

User space and kernel space

The preceding figure introduces the separation between kernel and user space, and
highlights the fact that system calls represent the bridge between them (we discuss this later
in this chapter). One can describe each space as following:

Kernel space: This is a set of addresses where the kernel is hosted and where it
runs. Kernel memory (or kernel space) is a memory range, owned by the kernel,
protected by access flags, preventing any user apps from messing with the kernel
(un)knowingly. On the other hand the kernel can access the whole system
memory, since it runs with the higher priority on the system. In kernel mode, the
CPU can access the whole memory (both kernel space and user space).

Device Driver Basis

[19]

User space: This is a set of addresses (locations) where normal programs (such as
gedit and so on) are restricted to run. You may consider it as a sand-box or a jail,
so that a user program can't mess with memory or any other resource owned by
another program. In user mode, the CPU can only access memory tagged with
user-space access rights. The only way for the user app to run into the kernel
space is through system calls. Some of these are read, write, open, close, mmap,
and so on. User-space code runs with lower priority. When a process performs a
system call, a software interrupt is sent to the kernel, which turns on privileged
mode so that the process can run in kernel space. When the system call returns,
the kernel turns off the privileged mode and the process is jailed again.

The concept of modules
A module is to the Linux kernel what a plugin (add-on) is to user software (Firefox is an
example). It dynamically extends the kernel functionalities without even the need to restart
the computer. Most of the time, kernel modules are plug and play. Once inserted, they are
ready to be used. In order to support modules, the kernel must have been built with the
following option enabled:

CONFIG_MODULES=y

Module dependencies
In Linux, a module can provide functions or variables, exporting them using the
EXPORT_SYMBOL macro, which makes them available for other modules. These are called
symbols. A dependency of module B on module A is that module B is using one of the
symbols exported by module A.

depmod utility
depmod is a tool that you run during the kernel build process to generate module
dependency files. It does that by reading each module in
/lib/modules/<kernel_release>/ to determine what symbols it should export and
what symbols it needs. The result of that process is written to the file modules.dep, and its
binary version modules.dep.bin. It is a kind of module indexing.

Device Driver Basis

[20]

Module loading and unloading
For a module to be operational, one should load it into the kernel, either by using insmod
given the module path as argument, which is the preferred method during development, or
by using modprobe, a clever command but that one prefered in production systems.

Manual loading
Manual loading needs the intervention of a user, which should have root access. The two
classical methods to achieve this are described as follows:

modprobe and insmod

During development, one usually uses insmod in order to load a module and it should be
given the path of the module to load:

insmod /path/to/mydrv.ko

It is low-level form of module loading, which forms the base of other module loading
methods, and the one we will use in this book. On the other hand, there is modprobe,
mostly used by sysadmin or in a production system. modprobe is a clever command that
parses the file modules.dep in order to load dependencies first, prior to loading the given
module. It automatically handles module dependencies, as a package manager does:

modprobe mydrv

Whether one can use modprobe or not depends on depmod being aware of module
installation.

/etc/modules-load.d/<filename>.conf

If you want some module to be loaded at boot time, just create the file /etc/modules-
load.d/<filename>.conf, and add the module's name that should be loaded, one per
line. <filename> should be meaningful to you, and people usually use module:
/etc/modules-load.d/modules.conf. You may create as many .conf files as you need:

An example of /etc/modules-load.d/mymodules.conf is as follows:

#this line is a comment

uio

iwlwifi

Device Driver Basis

[21]

Auto-loading
The depmod utility doesn't only build modules.dep and modules.dep.bin files. It does
more than that. When a kernel developer actually writes a driver, they know exactly what
hardware the driver will support. They are then responsible for feeding the driver with the
product and vendor IDs of all devices supported by the driver. depmod also processes
module files in order to extract and gather that information, and generates a
modules.alias file, located in /lib/modules/<kernel_release>/modules.alias,
which will map devices to their drivers:

An excerpt of modules.alias is as follows:

alias usb:v0403pFF1Cd*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0403pFF18d*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0403pDAFFd*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0403pDAFEd*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0403pDAFDd*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0403pDAFCd*dc*dsc*dp*ic*isc*ip*in* ftdi_sio

alias usb:v0D8Cp0103d*dc*dsc*dp*ic*isc*ip*in* snd_usb_audio

alias usb:v*p*d*dc*dsc*dp*ic01isc03ip*in* snd_usb_audio

alias usb:v200Cp100Bd*dc*dsc*dp*ic*isc*ip*in* snd_usb_au

At this step, you'll need a user-space hot-plug agent (or device manager), usually udev (or
mdev), that will register with the kernel in order to get notified when a new device appears.

The notification is done by the kernel, sending the device's description (pid, vid, class,
device class, device subclass, interface, and all other information that may identify a device)
to the hot-plug daemon, which in turn calls modprobe with this information. modprobe
then parses the modules.alias file in order to match the driver associated with the device.
Before loading the module, modprobe will look for its dependencies in module.dep. If it
finds any, the dependencies will be loaded prior to the associated module loading;
otherwise, the module is loaded directly.

Module unload
The usual command to unload a module is rmmod. One should prefer using this to unload a
module loaded with insmod command. The command should be given the module name to
unload as a parameter. Module unloading is a kernel feature that one can enable or disable,
according to the value of the CONFIG_MODULE_UNLOAD config option. Without this option,
one will not be able to unload any module. Let us enable module unloading support:

CONFIG_MODULE_UNLOAD=y

Device Driver Basis

[22]

At runtime, the kernel will prevent from unloading modules that may break things, even if
one asks it to do so. This is because the kernel keeps a reference count on module usage, so
that it knows whether a module is actually in use or not. If the kernel believes it is unsafe to
remove a module, it will not. Obviously, one can change this behavior:

MODULE_FORCE_UNLOAD=y

The preceding option should be set in the kernel config in order to force module unload:

rmmod -f mymodule

On the other hand, a higher level command to unload a module in a smart manner is
modeprobe -r, which automatically unloads unused dependencies:

modeprobe -r mymodule

As you may have guessed, it is a really helpful option for developers. Finally, one can check
whether a module is loaded or not with the following command:

lsmod

Driver skeletons
Let's consider the following helloworld module. It will be the basis for our work during
the rest of this chapter:

helloworld.c

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init helloworld_init(void) {

 pr_info("Hello world!\n");

 return 0;

}

static void __exit helloworld_exit(void) {

 pr_info("End of the world\n");

}

module_init(helloworld_init);

module_exit(helloworld_exit);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

Device Driver Basis

[23]

Module entry and exit point
Kernel drivers all have entry and exit points: the former corresponds to the function called
when the module is loaded (modprobe, insmod) and the latter is the function executed at
module unloading (at rmmod or modprobe -r).

We all remember the main() function, which is the entry point for every user-space
program written in C/C++ that exits when that same function returns. With kernel modules,
things are different. The entry point can have any name you want, and unlike a user-space
program that exits when main() returns, the exit point is defined in another function. All
you need to do is to inform the kernel which functions should be executed as an entry or
exit point. The actual functions hellowolrd_init and hellowolrd_exit could be given
any name. The only thing that is actually mandatory is to identify them as the
corresponding loading and removing functions, giving them as parameters to the
module_init() and module_exit() macros.

To sum up, module_init() is used to declare the function that should be called when the
module is loaded (with insmod or modprobe). What is done in the initialization function
will define the behavior of the module. module_exit() is used to declare the function that
should be called when the module is unloaded (with rmmod).

Either the init function or the exit function is run once, right after the
module is loaded or unloaded.

__init and __exit attributes
__init and __exit are actually kernel macros, defined in include/linux/init.h,
shown as follows:

#define __init__section(.init.text)

#define __exit__section(.exit.text)

The __init keyword tells the linker to place the code in a dedicated section into the kernel
object file. This section is known in advance to the kernel, and freed when the module is
loaded and the init function finished. This applies only to built-in drivers, not to loadable
modules. The kernel will run the init function of the driver for the first time during its boot
sequence.

Device Driver Basis

[24]

Since the driver cannot be unloaded, its init function will not be called again until the next
reboot. There is no need to keep references on its init function anymore. The same for the
__exit keyword, whose corresponding code is omitted when the module is compiled
statically into the kernel, or when module unloading support is not enabled, because in
both cases, the exit function is never called. __exit has no effect on loadable modules.

Let's spend more time understanding how such attributes work. It is all about object files
called Executable and Linkable Format (ELF). An ELF object file is made of various named
sections. Some of these are mandatory and form the basis of the ELF standard, but one can
make up any section one wants and have it used by special programs. This is what the
kernel does. One can run objdump -h module.ko in order to print out different sections
that constitute the given module.ko kernel module:

List of sections of helloworld-params.ko module

Device Driver Basis

[25]

Only a few of the sections in the caption are standerd ELF sections:

.text, also called code, which contains program code

.data, which contains initialized data, and is also called data segment

.rodata, for read-only data

.comment

Uninitialized data segment, also called block started by symbol (bss)

Other sections are added on demand for the kernel purpose.The most important for this
chapter are .modeinfo sections, which store information about the modules, and .init.text
sections, which store code prefixed with the __init macro.

The linker (ld on Linux systems), which is a part of binutils, is responsible for the
placement of symbols (data, code, and so on) in the appropriate section in the generated
binary in order to be processed by the loader when the program is executed. One may
customize these sections, change their default location, or even add additional sections by
providing a linker script, called a linker definition file (LDF) or linker definition script
(LDS). Now all you have to do is to inform the linker of the symbol placement through
compiler directives. The GNU C compiler provides attributes for that purpose. In the case of
the Linux kernel, there is a custom LDS file provided, located in
arch/<arch>/kernel/vmlinux.lds.S. __init and __exit are then used to mark
symbols to be placed onto dedicated sections mapped in kernel's LDS files.

In conclusion, __init and __exit are Linux directives (actually macros), which wrap the
C compiler attribute used for symbol placement. They instruct the compiler to put the code
they prefix respectively in .init.text and .exit.text sections, even though the kernel
can access different object sections.

Module information
Even without having to read its code, one should be able to gather some information (for
example, the author(s), parameter(s) description, the license) about a given module. A
kernel module uses its .modinfo section to store informations about the module. Any
MODULE_* macro will update the content of that section with the values passed as
parameters. Some of these macros are MODULE_DESCRIPTION(), MODULE_AUTHOR(), and
MODULE_LICENSE(). The real underlying macro provided by the kernel to add an entry in
the module info section is MODULE_INFO(tag, info), which adds generic info of form tag
= info. This means a driver author could add any free form info they want, such as:

MODULE_INFO(my_field_name, "What eeasy value");

Device Driver Basis

[26]

One can dump the content of the .modeinfo section of a kernel module using the objdump
-d -j .modinfo command on the given module:

Content of .modeinfo section of helloworld-params.ko module

Device Driver Basis

[27]

The modinfo section can be seen as the data sheet of the module. The user-space tool that
actually prints information in a stylized manner is modinfo:

modinfo output

Apart from the custom info one defines, there is standard info one should provide, and that
the kernel provides macros for; these are license, module author, parameter description,
module version, and module description.

Licensing
The license is defined in a given module by the MODULE_LICENSE() macro:

MODULE_LICENSE ("GPL");

The license will define how your source code should be shared (or not) with other
developers. MODULE_LICENSE() tells the kernel what license our module is under. It has an
effect on your module behavior, since a non GPL-compatible license will result in your
module not being able to see/use services/functions exported by the kernel through the
EXPORT_SYMBOL_GPL() macro, which shows the symbols to GPL-compatible modules
only, which is the opposite of EXPORT_SYMBOL(), which exports functions for modules
with any license. Loading a non GPL-compatible will also result in a tainted kernel; that
means a non-open source or untrusted code has been loaded, and you will likely have no
support from the community. Remember that the module without MODULE_LICENSE() is
not considered open source and will taint the kernel too. The following is an excerpt of
include/linux/module.h, describing the license supported by the kernel:

/*

 * The following license idents are currently accepted as indicating free

 * software modules

 *

 * "GPL" [GNU Public License v2 or later]

Device Driver Basis

[28]

 * "GPL v2" [GNU Public License v2]

 * "GPL and additional rights" [GNU Public License v2 rights and more]

 * "Dual BSD/GPL" [GNU Public License v2

 * or BSD license choice]

 * "Dual MIT/GPL" [GNU Public License v2

 * or MIT license choice]

 * "Dual MPL/GPL" [GNU Public License v2

 * or Mozilla license choice]

 *

 * The following other idents are available

 *

 * "Proprietary" [Non free products]

 *

 * There are dual licensed components, but when running with Linux it is

the

 * GPL that is relevant so this is a non issue. Similarly LGPL linked with

GPL

 * is a GPL combined work.

 *

 * This exists for several reasons

 * 1. So modinfo can show license info for users wanting to vet their

setup

 * is free

 * 2. So the community can ignore bug reports including proprietary

modules

 * 3. So vendors can do likewise based on their own policies

 */

It is mandatory for your module to be at least GPL-compatible in order for
you to enjoy full kernel services.

Module author(s)
MODULE_AUTHOR() declares the module's author(s):

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

It is possible to have more than one author. In this case, each author must be declared with
MODULE_AUTHOR():

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_AUTHOR("Lorem Ipsum <l.ipsum@foobar.com>");

Device Driver Basis

[29]

Module description
MODULE_DESCRIPTION() briefly describes what the module does:

MODULE_DESCRIPTION("Hello, world! Module");

Errors and message printing
Error codes are interpreted either by the kernel or by the user-space application (through
the errno variable). Error handling is very important in software development, more than
it is in kernel development. Fortunately, the kernel provides a couple of errors that cover
almost every error you'll encounter, and sometimes you will need to print them out in order
to help you debug.

Error handling
Return the wrong error code for a given error and it will result in either the kernel or user-
space app producing unneeded behavior and making a wrong decision. To keep things
clear, there are predefined errors in the kernel tree that cover almost every case you may
face. Some of the errors (with their meaning) are defined in include/uapi/asm-
generic/errno-base.h, and the rest of the list can be found in include/uapi/asm-
generic/errno.h. The following is an excerpt of list of errors, from include/uapi/asm-
generic/errno-base.h:

#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

#define E2BIG 7 /* Argument list too long */

#define ENOEXEC 8 /* Exec format error */

#define EBADF 9 /* Bad file number */

#define ECHILD 10 /* No child processes */

#define EAGAIN 11 /* Try again */

#define ENOMEM 12 /* Out of memory */

#define EACCES 13 /* Permission denied */

#define EFAULT 14 /* Bad address */

#define ENOTBLK 15 /* Block device required */

#define EBUSY 16 /* Device or resource busy */

#define EEXIST 17 /* File exists */

#define EXDEV 18 /* Cross-device link */

Device Driver Basis

[30]

#define ENODEV 19 /* No such device */

#define ENOTDIR 20 /* Not a directory */

#define EISDIR 21 /* Is a directory */

#define EINVAL 22 /* Invalid argument */

#define ENFILE 23 /* File table overflow */

#define EMFILE 24 /* Too many open files */

#define ENOTTY 25 /* Not a typewriter */

#define ETXTBSY 26 /* Text file busy */

#define EFBIG 27 /* File too large */

#define ENOSPC 28 /* No space left on device */

#define ESPIPE 29 /* Illegal seek */

#define EROFS 30 /* Read-only file system */

#define EMLINK 31 /* Too many links */

#define EPIPE 32 /* Broken pipe */

#define EDOM 33 /* Math argument out of domain of func */

#define ERANGE 34 /* Math result not representable */

Most of time, the classical way to return an error is to do so in the form return -ERROR,
especially when it comes to answering to system calls. For example, for an I/O error, the
error code is EIO and one should return -EIO:

dev = init(&ptr);

if(!dev)

return -EIO

Errors sometimes cross the kernel space and propagate themselves to the user space. If the
returned error is an answer to a system call (open, read, ioctl, mmap), the value will be
automatically assigned to the user-space errno global variable, on which one can use
strerror(errno) to translate the error into a readable string:

#include <errno.h> /* to access errno global variable */

#include <string.h>

[...]

if(wite(fd, buf, 1) < 0) {

 printf("something gone wrong! %s\n", strerror(errno));

}

[...]

When you face an error, you must undo everything that has been set until the error occurs.
The usual way to do this is to use the goto statement:

ptr = kmalloc(sizeof (device_t));

if(!ptr) {

 ret = -ENOMEM

 goto err_alloc;

}

dev = init(&ptr);

Device Driver Basis

[31]

if(dev) {

 ret = -EIO

 goto err_init;

}

return 0;

err_init:

 free(ptr);

err_alloc:

 return ret;

The reason why one uses the goto statement is simple. When it comes to handling error,
let's say at step 5, one has to clean previous operations (steps 4, 3, 2, 1). Instead of doing lot
of nested checking operation shown as follows:

if (ops1() != ERR) {

 if (ops2() != ERR) {

 if (ops3() != ERR) {

 if (ops4() != ERR) {

This may be confusing, and may lead to indentation issues. One prefers using the goto in
order to have a straight control flow, shown as follows:

if (ops1() == ERR) // |

 goto error1; // |

if (ops2() == ERR) // |

 goto error2; // |

if (ops3() == ERR) // |

 goto error3; // |

if (ops4() == ERR) // V

 goto error4;

error5:

[...]

error4:

[...]

error3:

[...]

error2:

[...]

error1:

[...]

This means, one should only use goto to move forward in a function.

Device Driver Basis

[32]

Handling null pointer errors
When it comes to returning an error from functions that are supposed to return a pointer,
functions often return the NULL pointer. It is a working but quite meaningless approach,
since one does not exactly know why this null pointer is returned. For that purpose, the
kernel provides three functions, ERR_PTR, IS_ERR, and PTR_ERR:

void *ERR_PTR(long error);

long IS_ERR(const void *ptr);

long PTR_ERR(const void *ptr);

The first actually returns the error value as a pointer. Given a function that is likely to
return -ENOMEM after a failed memory allocation, we have to do something like return
ERR_PTR(-ENOMEM);. The second is used to check whether the returned value is a pointer
error or not, if (IS_ERR(foo)). The last returns the actual error code return
PTR_ERR(foo);. The following is an example:

How to use ERR_PTR, IS_ERR, and PTR_ERR:

static struct iio_dev *indiodev_setup(){

 [...]

 struct iio_dev *indio_dev;

 indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));

 if (!indio_dev)

 return ERR_PTR(-ENOMEM);

 [...]

 return indio_dev;

}

static int foo_probe([...]){

 [...]

 struct iio_dev *my_indio_dev = indiodev_setup();

 if (IS_ERR(my_indio_dev))

 return PTR_ERR(data->acc_indio_dev);

 [...]

}

Device Driver Basis

[33]

This is a plus on error handling, which is also an excerpt of the kernel
coding style that says: If the name of a function is an action or an
imperative command, the function should return an error-code integer. If
the name is a predicate, the function should return a succeeded Boolean.
For example, add work is a command, and the add_work() function
returns 0 for success or -EBUSY for failure. In the same way, PCI device
present is a predicate, and the pci_dev_present() function returns 1 if
it succeeds in finding a matching device or 0 if it doesn't.

Message printing – printk()
The printk() is to the kernel what printf() is to the user-space. Lines written by
printk() can be displayed through the dmesg command. Depending on how important
the message you need to print is, you can choose between eight log-level messages, defined
in include/linux/kern_levels.h, along with their meaning:

The following is the list of kernel log levels. Each of these levels correspond to a number in
a string, whose priority is inverted proportional to the value of the number. For example, 0
is higher priority:

#define KERN_SOH "\001" /* ASCII Start Of Header */

#define KERN_SOH_ASCII '\001'

#define KERN_EMERG KERN_SOH "0" /* system is unusable */

#define KERN_ALERT KERN_SOH "1" /* action must be taken immediately

*/

#define KERN_CRIT KERN_SOH "2" /* critical conditions */

#define KERN_ERR KERN_SOH "3" /* error conditions */

#define KERN_WARNING KERN_SOH "4" /* warning conditions */

#define KERN_NOTICE KERN_SOH "5" /* normal but significant condition

*/

#define KERN_INFO KERN_SOH "6" /* informational */

#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

The following code shows how one can print a kernel message along with a log level:

printk(KERN_ERR "This is an error\n");

Device Driver Basis

[34]

If you omit the debug level (printk("This is an error\n")), the kernel will provide
one to the function, depending on the CONFIG_DEFAULT_MESSAGE_LOGLEVEL config
option, which is the default kernel log level. One may actually use one of the following,
much more meaningful macros, which are wrappers around those defined previously:
pr_emerg, pr_alert, pr_crit, pr_err, pr_warning, pr_notice, pr_info, and
pr_debug:

pr_err("This is the same error\n");

For new drivers, it is recommended to use these wrappers. The reality of printk() is that,
whenever it is called, the kernel compares the message log level with the current console log
level; if the former is higher (lower value) than the latter, the message will be immediately
printed to the console. You can check your log level parameters with:

 cat /proc/sys/kernel/printk
 4 4 1 7

In this code, the first value is the current log level (4), and the second is the default one,
according to the CONFIG_DEFAULT_MESSAGE_LOGLEVEL option. Other values are not
relevant for the purpose of this chapter, so let us ignore these.

A list of kernel log levels is as follows:

/* integer equivalents of KERN_<LEVEL> */

#define LOGLEVEL_SCHED -2 /* Deferred messages from sched code

 * are set to this special level */

#define LOGLEVEL_DEFAULT -1 /* default (or last) loglevel */

#define LOGLEVEL_EMERG 0 /* system is unusable */

#define LOGLEVEL_ALERT 1 /* action must be taken immediately

*/

#define LOGLEVEL_CRIT 2 /* critical conditions */

#define LOGLEVEL_ERR 3 /* error conditions */

#define LOGLEVEL_WARNING 4 /* warning conditions */

#define LOGLEVEL_NOTICE 5 /* normal but significant condition

*/

#define LOGLEVEL_INFO 6 /* informational */

#define LOGLEVEL_DEBUG 7 /* debug-level messages */

The current log level can be changed with:

 # echo <level> > /proc/sys/kernel/printk

Device Driver Basis

[35]

printk() never blocks and is safe enough to be called even from atomic
contexts. It tries to lock the console and print the message. If locking fails,
the output will be written into a buffer and the function will return, never
blocking. The current console holder will then be notified about new
messages and will print them before releasing the console.

The kernel supports other debug methods too, either dynamically or by using #define
DEBUG on top of the file. People interested in such debugging style can refer to kernel
documentation in Documentation/dynamic-debug-howto.txt file.

Module parameters
As a user program does, a kernel module can accept arguments from the command line.
This allows dynamically changing the behavior of the module according to given
parameters, and can help the developer not having to indefinitely change/compile the
module during a test/debug session. In order to set this up, one should first declare the
variables that will hold the values of command line arguments, and use the
module_param() macro on each of these. The macro is defined in
include/linux/moduleparam.h (this should be included in the code too: #include
<linux/moduleparam.h>) shown as follows:

module_param(name, type, perm);

This macro contains the following elements:

name: The name of the variable used as the parameter
type: The parameter's type (bool, charp, byte, short, ushort, int, uint, long,
ulong), where charp stands for char pointer
perm: This represents the /sys/module/<module>/parameters/<param> file
permissions. Some of them are S_IWUSR, S_IRUSR, S_IXUSR, S_IRGRP, S_WGRP,
and S_IRUGO, where:

S_I is just a prefix
R: read, W: write, X: execute
USR: user, GRP: group, UGO: user, group, others

Device Driver Basis

[36]

One can eventually use a | (OR operation) to set multiple permissions. If perm is 0, the file
parameter in sysfs will not be created. You should use only S_IRUGO read-only
parameters, which I highly recommend; by making a | (OR) with other properties, you can
obtain fine-grained properties.

When using module parameters, one should use MODULE_PARM_DESC in order to describe
each of them. This macro will populate the module info section with each parameter's
description. The following is a sample, from the helloworld-params.c source file
provided with the code repository of the book:

#include <linux/moduleparam.h>

[...]

static char *mystr = "hello";

static int myint = 1;

static int myarr[3] = {0, 1, 2};

module_param(myint, int, S_IRUGO);

module_param(mystr, charp, S_IRUGO);

module_param_array(myarr, int,NULL, S_IWUSR|S_IRUSR); /* */

MODULE_PARM_DESC(myint,"this is my int variable");

MODULE_PARM_DESC(mystr,"this is my char pointer variable");

MODULE_PARM_DESC(myarr,"this is my array of int");

static int foo()

{

 pr_info("mystring is a string: %s\n", mystr);

 pr_info("Array elements: %d\t%d\t%d", myarr[0], myarr[1], myarr[2]);

 return myint;

}

To load the module and feed our parameter, we do the following:

insmod hellomodule-params.ko mystring="packtpub" myint=15 myArray=1,2,3

Device Driver Basis

[37]

One could have used modinfo prior to loading the module in order to display description
of parameters supported by the module:

$ modinfo ./helloworld-params.ko
filename: /home/jma/work/tutos/sources/helloworld/./helloworld-params.ko
license: GPL
author: John Madieu <john.madieu@gmail.com>
srcversion: BBF43E098EAB5D2E2DD78C0
depends:
vermagic: 4.4.0-93-generic SMP mod_unload modversions
parm: myint:this is my int variable (int)
parm: mystr:this is my char pointer variable (charp)
parm: myarr:this is my array of int (array of int)

Building your first module
There are two places to build a module. It depends on whether you want people to enable
the module by themselves or not using the kernel config interface.

The module's makefile
A makefile is a special file used to execute a set of actions, among which the most important
is the compilation of programs. There is a dedicated tool to parse makefiles, called make.
Prior to jumping to the description of the whole make file, let us introduce the obj-<X>
kbuild variable.

In almost every kernel makefile, one will see at least one instance of an obj<-X> variable.
This actually corresponds to the obj-<X> pattern, where <X> should be either y, m, left
blank, or n. This is used by the kernel makefile from the head of the kernel build system in a
general manner. These lines define the files to be built, any special compilation options, and
any subdirectories to be entered recursively. A simple example is:

 obj-y += mymodule.o

Device Driver Basis

[38]

This tells kbuild that there is one object in the current directory named mymodule.o.
mymodule.o will be built from mymodule.c or mymodule.S. How and if mymodule.o will
be built or linked depends on the value of <X>:

If <X> is set to m, the variable obj-m is used, and mymodule.o will be built as a
module.
If <X> is set to y, the variable obj-y is used, and mymodule.o will be built as part
of the kernel. One then says foo is a built-in module.
If <X> is set to n, the variable obj-m is used, and mymodule.o will not be built at
all.

Therefore, the pattern obj-$(CONFIG_XXX) is often used, where CONFIG_XXX is a kernel
config option, set or not during the kernel configuration process. An example is:

obj-$(CONFIG_MYMODULE) += mymodule.o

$(CONFIG_MYMODULE) evaluates to either y or m according to its value during the kernel
configuration (remember make menuconfig). If CONFIG_MYMODULE is neither y nor m, then
the file will not be compiled nor linked. y means built-in (it stands for yes in the kernel
config process), and m stands for module. $(CONFIG_MYMODULE) pulls the right answer
from the normal config process. This is explained in the next section.

The last use case is:

obj-<X> += somedir/

This means that kbuild should go into the directory named somedir; look for any makefile
inside and process it in order to decide what objects should be built.

Back to the makefile, the following is the content makefile we will use to build each of the
modules introduced in the book:

obj-m := helloworld.o

KERNELDIR ?= /lib/modules/$(shell uname -r)/build

all default: modules

install: modules_install

modules modules_install help clean:

$(MAKE) -C $(KERNELDIR) M=$(shell pwd) $@

Device Driver Basis

[39]

obj-m := hellowolrd.o: obj-m lists modules we want to build. For each
<filename>.o, the build system will look for a <filename>.c to build. obj-m
is used to build a module, whereas obj-y will result in a built-in object.
KERNELDIR := /lib/modules/$(shell uname -r)/build: KERNELDIR is
the location of the prebuilt kernel source. As we said earlier, we need a prebuilt
kernel in order to build any module. If you have built your kernel from the
source, one should set this variable with the absolute path of the built source
directory. -C instructs to make utility to change into the specified directory prior
to reading the makefiles or doing anything else.
M=$(shell pwd): This is relevant to the kernel build system. The kernel
Makefile uses this variable to locate the directory of the external module to build.
Your .c files should be placed.
all default: modules: This line instructs the make utility to execute the
modules target, whether all or default targets, which are classical targets
when it comes to building user apps. In other words, make default or make
all or simply make commands will be translated into make modules.
modules modules_install help clean:: This line represents the list target
valid in this Makefile .
$(MAKE) -C $(KERNELDIR) M=$(shell pwd) $@: This is the rule to be
executed for each target enumerated above. $@ will be replaced with the name of
the target that caused the rule to run. In other words, if one calls make modules,
$@ will be replaced with modules, and the rule will become: $(MAKE) -C
$(KERNELDIR) M=$(shell pwd) module.

In the kernel tree
Before you can build your driver in the kernel tree, you should first identify which directory
in drivers should host your .c file. Given your file name mychardev.c, which contains the
source code of your special character driver, it should be placed to the drivers/char
directory in the kernel source. Every subdirectory in drivers has both Makefile and
Kconfig files.

Device Driver Basis

[40]

Add the following content to the Kconfig of that directory:

config PACKT_MYCDEV

 tristate "Our packtpub special Character driver"

 default m

 help

 Say Y here if you want to support the /dev/mycdev device.

 The /dev/mycdev device is used to access packtpub.

In the makefile of that same directory, add:

obj-$(CONFIG_PACKT_MYCDEV) += mychardev.o

Be careful when updating the Makefile; the .o file name must match the exact name of
your .c file. If your source file is foobar.c, you must use foobar.o in the Makefile. In
order to have your driver built as a module, add the following line in your board defconfig
in the arch/arm/configs directory:

CONFIG_PACKT_MYCDEV=m

You may also run make menuconfig to select it from the UI, and run make, to build the
kernel, then make modules to build modules (including yours). To make the driver be built
in, just replace m with y:

CONFIG_PACKT_MYCDEV=m

Everything described here is what embedded board manufacturers do in order to provide a
Board Support Package (BSP) with their board, with a kernel that already contains their
custom drivers:

Device Driver Basis

[41]

packt_dev module in kernel tree

Device Driver Basis

[42]

Once configured, you can build the kernel with make and build modules with make
modules.

Modules included in the kernel source tree are installed in
/lib/modules/$(KERNELRELEASE)/kernel/. On your Linux system, it is
/lib/modules/$(uname -r)/kernel/. Run the following command in order to install
the modules:

make modules_install

Out of the tree
Before you can build an external module, you need to have a complete and precompiled
kernel source-tree. The kernel source-tree version must be the same as the kernel you'll load
and use your module with. There are two ways to obtain a prebuilt kernel version:

Build it by yourself (discussed this earlier)
Install the linux-headers-* package from your distribution repository

 sudo apt-get update
 sudo apt-get install linux-headers-$(uname -r)

This will install only headers, not the whole source tree. Headers will then be installed in
/usr/src/linux-headers-$(uname -r). On my computer, it is /usr/src/linux-
headers-4.4.0-79-generic/. There will be a symlink, /lib/modules/$(uname -
r)/build, pointing to the previously installed headers. It is the path you should specify as
your kernel directory in your Makefile. It is all you have to do for a prebuilt kernel.

Building the module
Now, when you are done with your makefile, just change to your source directory and run
the make command, or make modules:

 jma@jma:~/work/tutos/sources/helloworld$ make
 make -C /lib/modules/4.4.0-79-generic/build \
 M=/media/jma/DATA/work/tutos/sources/helloworld modules
 make[1]: Entering directory '/usr/src/linux-headers-4.4.0-79-
generic'
 CC [M]
/media/jma/DATA/work/tutos/sources/helloworld/helloworld.o
 Building modules, stage 2.
 MODPOST 1 modules

Device Driver Basis

[43]

 CC
/media/jma/DATA/work/tutos/sources/helloworld/helloworld.mod.o
 LD [M]
/media/jma/DATA/work/tutos/sources/helloworld/helloworld.ko
 make[1]: Leaving directory '/usr/src/linux-headers-4.4.0-79-
generic'
 jma@jma:~/work/tutos/sources/helloworld$ ls
 helloworld.c helloworld.ko helloworld.mod.c helloworld.mod.o
helloworld.o Makefile modules.order Module.symvers
 jma@jma:~/work/tutos/sources/helloworld$ sudo insmod helloworld.ko
 jma@jma:~/work/tutos/sources/helloworld$ sudo rmmod helloworld
 jma@jma:~/work/tutos/sources/helloworld$ dmesg
 [...]
 [308342.285157] Hello world!
 [308372.084288] End of the world

The preceding example only dealt with native builds, compiling on an x86 machine for an
x86 machine. What about cross-compilation ? This is the process by which one compiles on
machine A, called host, a code that is intended to run on machine B, called target; host and
target having different architectures. The classical use case is to build on an x86 machine a
code that should run on an ARM architecture, which is exactly our situation.

When it comes to crosscompiling a kernel module, there are essentially two variables the
kernel makefile needs to be aware of; these are: ARCH and CROSS_COMPILE, which
respectively represent the target architecture and the compiler prefix name. So what change
between native compilation and cross compilation of a kernel module is the make
command. The following is the line to build for ARM:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf-

Summary
This chapter showed you the basics of driver development and explained the concept of
module/built-in devices, as well as their loading and unloading. Even if you are not able to
interact with the user space, you are ready to write a complete driver, print a formatted
message, and understand the concept of init/exit. The next chapter will deal with
character devices, with which you will be able to target enhanced features, write code
accessible from the user space, and have a significant impact on the system.

3
Kernel Facilities and Helper

Functions
The kernel is a standalone piece of software, as you'll see in this chapter, that does not make
use of any C library. It implements any mechanism you may encounter in modern libraries,
and even more, such as compression, string functions, and so on. We will walk step by step
through the most important aspects of such capabilities.

In this chapter, we will cover the following topic:

Introducing the kernel container data structure
Dealing with the kernel sleeping mechanism
Using timers
Delving into the kernel locking mechanism (mutex, spnlock)
Deferring work using a kernel dedicated API
Using IRQs

Understanding container_of macro
When it comes to managing several data structures in the code, you'll almost always need
to embed one structure into another and retrieve them at any moment without being asked
questions about memory offset or boundaries. Let's say you have a struct person, as
defined here:

 struct person {

 int age;

 char *name;

 } p;

Kernel Facilities and Helper Functions

[45]

By only having a pointer on age or name, one can retrieve the whole structure wrapping
(containing) that pointer. As the name says, container_of macro is used to find the
container of the given field of a structure. The macro is defined in
include/linux/kernel.h and looks like:

#define container_of(ptr, type, member) ({ \

 const typeof(((type *)0)->member) * __mptr = (ptr); \

 (type *)((char *)__mptr - offsetof(type, member)); })

Don't be afraid by the pointers; just see it as:

container_of(pointer, container_type, container_field);

Here are the elements of the preceding code fragment:

pointer: This is the pointer to the field in the structure
container_type: This is the type of structure wrapping (containing) the pointer
container_field: This is the name of the field to which pointer points inside
the structure

Let us consider the following container:

struct person {

 int age;

 char *name;

 };

Now let us consider one of its instance, along with a pointer to the name member:

struct person somebody;

[...]

char *the_name_ptr = somebody.name;

Along with a pointer to the name member (the_name_ptr), you can use the container_of
macro in order to get a pointer to the whole structure (container) that wraps this member by
using the following:

struct person *the_person;

the_person = container_of(the_name_ptr, struct person, name);

container_of takes the offset of name at the beginning of the struct into account to get the
correct pointer location. If you subtract the offset of the field name from the pointer
the_name_ptr, you will get the correct location. It is what the macro's last line does:

(type *)((char *)__mptr - offsetof(type,member));

Kernel Facilities and Helper Functions

[46]

Applying this to a real example, it gives the following:

struct family {

 struct person *father;

 struct person *mother;

 int number_of_suns;

 int salary;

} f;

/*

 * pointer to a field of the structure

 * (could be any member of any family)

*/

struct *person = family.father;

struct family *fam_ptr;

/* now let us retrieve back its family */

fam_ptr = container_of(person, struct family, father);

It's all you need to know about the container_of macro, and believe me, it is enough. In
real drivers that we'll develop further in the book, it looks like the following:

struct mcp23016 {

 struct i2c_client *client;

 struct gpio_chip chip;

}

/* retrive the mcp23016 struct given a pointer 'chip' field */

static inline struct mcp23016 *to_mcp23016(struct gpio_chip *gc)

{

 return container_of(gc, struct mcp23016, chip);

}

static int mcp23016_probe(struct i2c_client *client,

 const struct i2c_device_id *id)

{

 struct mcp23016 *mcp;

 [...]

 mcp = devm_kzalloc(&client->dev, sizeof(*mcp), GFP_KERNEL);

 if (!mcp)

 return -ENOMEM;

 [...]

}

controller_of macro is mainly used in generic containers in the kernel. In some
examples in this book (starting from Chapter 5, Platform Device Drivers), you will encounter
the container_of macro.

Kernel Facilities and Helper Functions

[47]

Linked lists
Imagine you have a driver that manages more than one device, let's say five devices. You
may need to keep a track of each of them in your driver. What you need here is a linked list.
Two types of linked list actually exist:

Simply linked list
Doubly linked list

Therefore, kernel developers only implement circular doubly linked lists because this
structure allows you to implement FIFO and LIFO, and kernel developers take care to
maintain a minimal set of code. The header to be added in the code in order to support lists
is <linux/list.h>. The data structure at the core of list implementation in the kernel is
struct list_head structure, defined as the following:

struct list_head {

 struct list_head *next, *prev;

 };

The struct list_head is used in both the head of the list and each node. In the world of
the kernel, before a data structure can be represented as a linked list, that structure must
embed a struct list_head field. For example, let's create a list of cars:

struct car {

 int door_number;

 char *color;

 char *model;

};

Before we can create a list for the car, we must change its structure in order to embed a
struct list_head field. The structure becomes:

struct car {

 int door_number;

 char *color;

 char *model;

 struct list_head list; /* kernel's list structure */

};

Kernel Facilities and Helper Functions

[48]

First, we need to create a struct list_head variable that will always point to the head
(first element) of our list. This instance of list_head is not associated to any car and is
special:

static LIST_HEAD(carlist) ;

Now we can create cars and add them to our list—carlist:

#include <linux/list.h>

struct car *redcar = kmalloc(sizeof(*car), GFP_KERNEL);

struct car *bluecar = kmalloc(sizeof(*car), GFP_KERNEL);

/* Initialize each node's list entry */

INIT_LIST_HEAD(&bluecar->list);

INIT_LIST_HEAD(&redcar->list);

/* allocate memory for color and model field and fill every field */

 [...]

list_add(&redcar->list, &carlist) ;

list_add(&bluecar->list, &carlist) ;

It is as simple as that. Now, carlist contains two elements. Let us get deeper into the
linked list API.

Creating and initializing the list
There are two ways to create and initialize the list:

Dynamic method
The dynamic method consists of a struct list_head and initializes it with the
INIT_LIST_HEAD macro:

struct list_head mylist;

INIT_LIST_HEAD(&mylist);

Kernel Facilities and Helper Functions

[49]

The following is the expansion of INIT_LIST_HEAD:

static inline void INIT_LIST_HEAD(struct list_head *list)

 {

 list->next = list;

 list->prev = list;

 }

Static method
Static allocation is done through the LIST_HEAD macro:

LIST_HEAD(mylist)

LIST_HEADs definition is defined as follows:

#define LIST_HEAD(name) \

 struct list_head name = LIST_HEAD_INIT(name)

The following is its expansion:

#define LIST_HEAD_INIT(name) { &(name), &(name) }

This assigns each pointer (prev and next) inside the name field to point to name itself (just
like INIT_LIST_HEAD does).

Creating a list node
To create new nodes, just create our data struct instance, and initialize their embedded
list_head field. Using the car example, it will give the following:

struct car *blackcar = kzalloc(sizeof(struct car), GFP_KERNEL);

/* non static initialization, since it is the embedded list field*/

INIT_LIST_HEAD(&blackcar->list);

As said earlier, use INIT_LIST_HEAD, which is a dynamically allocated list and usually
part of another structure.

Kernel Facilities and Helper Functions

[50]

Adding a list node
The kernel provides list_add to add a new entry to the list, which is a wrapper around the
internal function __list_add:

void list_add(struct list_head *new, struct list_head *head);

static inline void list_add(struct list_head *new, struct list_head *head)

{

 __list_add(new, head, head->next);

}

__list_add will take two known entries as a parameter, and inserts your elements
between them. Its implementation in the kernel is quite easy:

static inline void __list_add(struct list_head *new,

 struct list_head *prev,

 struct list_head *next)

{

 next->prev = new;

 new->next = next;

 new->prev = prev;

 prev->next = new;

}

The following is an example of adding two cars in our list:

list_add(&redcar->list, &carlist);

list_add(&blue->list, &carlist);

This mode can be used to implement a stack. The other function to add an entry into the list
is:

void list_add_tail(struct list_head *new, struct list_head *head);

This inserts the given new entry at the end of the list. Given our previous example, we can
use the following:

list_add_tail(&redcar->list, &carlist);

list_add_tail(&blue->list, &carlist);

This mode can be used to implement a queue.

Kernel Facilities and Helper Functions

[51]

Deleting a node from the list
List handling is an easy task in kernel code. Deleting a node is straightforward:

 void list_del(struct list_head *entry);

Following the preceding example, let us delete the red car:

list_del(&redcar->list);

list_del disconnects the prev and next pointers of the given entry,
resulting in an entry removal. The memory allocated for the node is not
freed yet; you need to do that manually with kfree.

Linked list traversal
We have the macro list_for_each_entry(pos, head, member) for list traversal.

head is the list's head node.
member is the name of the list struct list_head within our data struct (in our
case, it is list).
pos is used for iteration. It is a loop cursor (just like i in for(i=0; i<foo;
i++)). head could be the head node of the linked list, or any entry, and we don't
care since we are dealing with a doubly linked list:

struct car *acar; /* loop counter */

int blue_car_num = 0;

/* 'list' is the name of the list_head struct in our data structure */

list_for_each_entry(acar, carlist, list){

 if(acar->color == "blue")

 blue_car_num++;

}

Kernel Facilities and Helper Functions

[52]

Why do we need the name of the list_head type field in our data structure? Look at the
list_for_each_entry definition:

#define list_for_each_entry(pos, head, member) \

for (pos = list_entry((head)->next, typeof(*pos), member); \

 &pos->member != (head); \

 pos = list_entry(pos->member.next, typeof(*pos), member))

#define list_entry(ptr, type, member) \

 container_of(ptr, type, member)

Given this, we can understand that it is all about container_of's power. Also bear in mind
list_for_each_entry_safe(pos, n, head, member).

Kernel sleeping mechanism
Sleeping is the mechanism by which a process relaxes a processor, with the possibility of
handling another process. The reason why a processor can sleep could be for sensing data
availability, or waiting for a resource to be free.

The kernel scheduler manages a list of tasks to run, known as a run queue. Sleeping
processes are not scheduled anymore, since they are removed from that run queue. Unless
its state changes (that is, it wakes up), a sleeping process will never be executed. You may
relax a processor as soon as one is waiting for something (resource or anything else), and
make sure a condition or someone else will wake it up. That said, the Linux kernel eases the
implementation of the sleeping mechanism by providing a set of functions and data
structures.

Wait queue
Wait queues are essentially used to process blocked I/O, to wait for particular conditions to
be true, and to sense data or resource availability. To understand how it works, let's have a
look at its structure in include/linux/wait.h:

struct __wait_queue {

 unsigned int flags;

#define WQ_FLAG_EXCLUSIVE 0x01

 void *private;

 wait_queue_func_t func;

 struct list_head task_list;

};

Kernel Facilities and Helper Functions

[53]

Let's pay attention to the task_list field. As you can see, it is a list. Every process you
want to put to sleep is queued in that list (hence the name wait queue) and put into a sleep
state until a condition becomes true. The wait queue can be seen as nothing but a simple list
of processes and a lock.

The functions you will always face when dealing with wait queues are:

Static declaration:

DECLARE_WAIT_QUEUE_HEAD(name)

Dynamic declaration:

wait_queue_head_t my_wait_queue;

init_waitqueue_head(&my_wait_queue);

Blocking:

/*

 * block the current task (process) in the wait queue if

 * CONDITION is false

 */

int wait_event_interruptible(wait_queue_head_t q, CONDITION);

Unblocking:

/*

 * wake up one process sleeping in the wait queue if

 * CONDITION above has become true

 */

void wake_up_interruptible(wait_queue_head_t *q);

wait_event_interruptible does not continuously poll, but simply evaluates the
condition when it is called. If the condition is false, the process is put into a
TASK_INTERRUPTIBLE state and removed from the run queue. The condition is then only
rechecked each time you call wake_up_interruptible in the wait queue. If the condition
is true when wake_up_interruptible runs, a process in the wait queue will be
awakened, and its state set to TASK_RUNNING. Processes are awakened in the order they are
put to sleep. To awaken all processes waiting in the queue, you should use
wake_up_interruptible_all.

Kernel Facilities and Helper Functions

[54]

In fact, the main functions are wait_event, wake_up, and wake_up_all.
They are used with processes in the queue in an exclusive
(uninterruptible) wait, since they can't be interrupted by the signal. They
should be used only for critical tasks. Interruptible functions are just
optional (but recommended). Since they can be interrupted by signals, you
should check their return value. A nonzero value means your sleep has
been interrupted by some sort of signal, and the driver should return
ERESTARTSYS.

If someone has called wake_up or wake_up_interruptible and the condition is still
FALSE, then nothing will happen. Without wake_up (or wake_up_interuptible),
process(es) will never be awakened. Here is an example of a wait queue:

#include <linux/module.h>

#include <linux/init.h>

#include <linux/sched.h>

#include <linux/time.h>

#include <linux/delay.h>

#include<linux/workqueue.h>

static DECLARE_WAIT_QUEUE_HEAD(my_wq);

static int condition = 0;

/* declare a work queue*/

static struct work_struct wrk;

static void work_handler(struct work_struct *work)

{

 printk("Waitqueue module handler %s\n", __FUNCTION__);

 msleep(5000);

 printk("Wake up the sleeping module\n");

 condition = 1;

 wake_up_interruptible(&my_wq);

}

static int __init my_init(void)

{

 printk("Wait queue example\n");

 INIT_WORK(&wrk, work_handler);

 schedule_work(&wrk);

 printk("Going to sleep %s\n", __FUNCTION__);

 wait_event_interruptible(my_wq, condition != 0);

 pr_info("woken up by the work job\n");

Kernel Facilities and Helper Functions

[55]

 return 0;

}

void my_exit(void)

{

 printk("waitqueue example cleanup\n");

}

module_init(my_init);

module_exit(my_exit);

MODULE_AUTHOR("John Madieu <john.madieu@foobar.com>");

MODULE_LICENSE("GPL");

In the preceding example, the current process (actually insmod) will be put into sleep in the
wait queue for 5 seconds and woken up by the work handler. The dmesg output is as
follows:

 [342081.385491] Wait queue example
 [342081.385505] Going to sleep my_init
 [342081.385515] Waitqueue module handler work_handler
 [342086.387017] Wake up the sleeping module
 [342086.387096] woken up by the work job
 [342092.912033] waitqueue example cleanup

Delay and timer management
Time is one of the most used resources, right after memory. It is used to do almost
everything: defer work, sleep, scheduling, timeout, and many other tasks.

There are the two categories of time. The kernel uses absolute time to know what time it is,
that is, the date and time of the day, whereas relative time is used by, for example, the
kernel scheduler. For absolute time, there is a hardware chip called real-time clock (RTC).
We will deal with such devices later in the book in Chapter 18, RTC Drivers. On the other
side, to handle relative time, the kernel relies on a CPU feature (peripheral), called a timer,
which, from the kernel's point of view, is called a kernel timer. Kernel timers are what we
will talk about in this section.

Kernel timers are classified into two different parts:

Standard timers, or system timers
High-resolution timers

Kernel Facilities and Helper Functions

[56]

Standard timers
Standard timers are kernel timers operating on the granularity of jiffies.

Jiffies and HZ
A jiffy is a kernel unit of time declared in <linux/jiffies.h>. To understand jiffies, we
need to introduce a new constant HZ, which is the number of times jiffies is
incremented in one second. Each increment is called a tick. In other words, HZ represents
the size of a jiffy. HZ depends on the hardware and on the kernel version, and also
determines how frequently the clock interrupt fires. This is configurable on some
architecture, fixed on other ones.

What it means is that jiffies is incremented HZ times every second. If HZ = 1,000, then it
is incremented 1,000 times (that is, one tick every 1/1,000 seconds). Once defined, the
programmable interrupt timer (PIT), which is a hardware component, is programmed with
that value in order to increment jiffies when the PIT interrupt comes in.

Depending on the platform, jiffies can lead to overflow. On a 32-bit system, HZ = 1,000 will
result in about 50 days duration only, whereas the duration is about 600 million years on a
64-bit system. By storing jiffies in a 64-bit variable, the problem is solved. A second variable
has then been introduced and defined in <linux/jiffies.h>:

extern u64 jiffies_64;

In this manner on 32-bit systems, jiffies will point to low-order 32-bits, and jiffies_64
will point to high-order bits. On 64-bit platforms, jiffies = jiffies_64.

Timers API
A timer is represented in the kernel as an instance of timer_list:

#include <linux/timer.h>

struct timer_list {

 struct list_head entry;

 unsigned long expires;

 struct tvec_t_base_s *base;

 void (*function)(unsigned long);

 unsigned long data;

);

Kernel Facilities and Helper Functions

[57]

expires is an absolute value in jiffies. entry is a doubly linked list, and data is optional,
and passed to the callback function.

Timer setup initialization

The following are steps to initialize timers:

Setting up the timer: Set up the timer, feeding the user-defined callback and1.
data:

void setup_timer(struct timer_list *timer, \

 void (*function)(unsigned long), \

 unsigned long data);

One can also use this:

void init_timer(struct timer_list *timer);

setup_timer is a wrapper around init_timer.

Setting the expiration time: When the timer is initialized, we need to set its2.
expiration before the callback gets fired:

int mod_timer(struct timer_list *timer, unsigned long expires);

Releasing the timer: When you are done with the timer, it needs to be released:3.

void del_timer(struct timer_list *timer);

int del_timer_sync(struct timer_list *timer);

del_timer returns void whether it has deactivated a pending timer or not. Its
return value is 0 on an inactive timer, or 1 on an active one. The last,
del_timer_sync, waits for the handler to finish its execution, even those that
may happen on another CPU. You should not hold a lock preventing the handler's
completion, otherwise it will result in a dead lock. You should release the timer in
the module cleanup routine. You can independently check whether the timer is
running or not:

int timer_pending(const struct timer_list *timer);

This function checks whether there are any fired timer callbacks pending.

Kernel Facilities and Helper Functions

[58]

Standard timer example
#include <linux/init.h>

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/timer.h>

static struct timer_list my_timer;

void my_timer_callback(unsigned long data)

{

 printk("%s called (%ld).\n", __FUNCTION__, jiffies);

}

static int __init my_init(void)

{

 int retval;

 printk("Timer module loaded\n");

 setup_timer(&my_timer, my_timer_callback, 0);

 printk("Setup timer to fire in 300ms (%ld)\n", jiffies);

 retval = mod_timer(&my_timer, jiffies + msecs_to_jiffies(300));

 if (retval)

 printk("Timer firing failed\n");

 return 0;

}

static void my_exit(void)

{

 int retval;

 retval = del_timer(&my_timer);

 /* Is timer still active (1) or no (0) */

 if (retval)

 printk("The timer is still in use...\n");

 pr_info("Timer module unloaded\n");

}

module_init(my_init);

module_exit(my_exit);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Standard timer example");

MODULE_LICENSE("GPL");

Kernel Facilities and Helper Functions

[59]

High resolution timers (HRTs)
Standard timers are less accurate and do not suit real-time applications. High-resolution
timers, introduced in kernel v2.6.16 (and enabled by the CONFIG_HIGH_RES_TIMERS option
in the kernel configuration) have a resolution of microseconds (up to nanoseconds,
depending on the platform), compared to milliseconds on standard timers. The standard
timer depends on HZ (since they rely on jiffies), whereas HRT implementation is based on
ktime.

Kernel and hardware must support an HRT before being used on your system. In other
words, there must be an arch-dependent code implemented to access your hardware HRTs.

HRT API
The required headers are:

#include <linux/hrtimer.h>

An HRT is represented in the kernel as an instance of hrtimer:

struct hrtimer {

 struct timerqueue_node node;

 ktime_t _softexpires;

 enum hrtimer_restart (*function)(struct hrtimer *);

 struct hrtimer_clock_base *base;

 u8 state;

 u8 is_rel;

};

HRT setup initialization

Initializing the hrtimer: Before hrtimer initialization, you need to set up a ktime,1.
which represents time duration. We will see how to achieve that in the following
example:

 void hrtimer_init(struct hrtimer *time, clockid_t which_clock,

 enum hrtimer_mode mode);

Starting hrtimer: hrtimer can be started as shown in the following example:2.

int hrtimer_start(struct hrtimer *timer, ktime_t time,

 const enum hrtimer_mode mode);

Kernel Facilities and Helper Functions

[60]

mode represents the expiry mode. It should be HRTIMER_MODE_ABS for an
absolute time value, or HRTIMER_MODE_REL for a time value relative to now.

hrtimer cancellation: You can either cancel the timer or see whether it is possible3.
to cancel it or not:

int hrtimer_cancel(struct hrtimer *timer);

int hrtimer_try_to_cancel(struct hrtimer *timer);

Both return 0 when the timer is not active and 1 when the timer is active. The
difference between these two functions is that hrtimer_try_to_cancel fails if
the timer is active or its callback is running, returning -1, whereas
hrtimer_cancel will wait until the callback finishes.

We can independently check whether the hrtimer's callback is still running with the
following:

int hrtimer_callback_running(struct hrtimer *timer);

Remember, hrtimer_try_to_cancel internally calls hrtimer_callback_running.

In order to prevent the timer from automatically restarting, the hrtimer
callback function must return HRTIMER_NORESTART.

You can check whether HRTs are available on your system by doing the following:

By looking in the kernel config file, which should contain something like
CONFIG_HIGH_RES_TIMERS=y: zcat /proc/configs.gz | grep

CONFIG_HIGH_RES_TIMERS.
By looking at the cat /proc/timer_list or cat /proc/timer_list | grep
resolution result. The .resolution entry must show 1 nsecs and the
event_handler must show hrtimer_interrupts.
By using the clock_getres system call.
From within the kernel code, by using #ifdef CONFIG_HIGH_RES_TIMERS.

With HRTs enabled on your system, the accuracy of sleep and timer system calls do not
depend on jiffies anymore, but they are still as accurate as HRTs are. It is the reason why
some systems do not support nanosleep(), for example.

Kernel Facilities and Helper Functions

[61]

Dynamic tick/tickless kernel
With previous HZ options, the kernel is interrupted HZ times per second in order to
reschedule tasks, even in an idle state. If HZ is set to 1,000, there will be 1,000 kernel
interruptions per second, preventing the CPU from being idle for a long time, thus affecting
CPU power consumption.

Now let's look at a kernel with no fixed or predefined ticks, where the ticks are disabled
until some task needs to be performed. We call such a kernel a tickless kernel. In fact, tick
activation is scheduled, based on the next action. The right name should be dynamic tick
kernel. The kernel is responsible for task scheduling, and maintains a list of runnable tasks
(the run queue) in the system. When there is no task to schedule, the scheduler switches to
the idle thread, which enables dynamic tick by disabling the periodic tick until the next
timer expires (a new task is queued for processing).

Under the hood, the kernel also maintains a list of the tasks timeouts (it then knows when
and how long it has to sleep). In an idle state, if the next tick is further away than the lowest
timeout in the tasks list timeout, the kernel programs the timer with that timeout value.
When the timer expires, the kernel re-enables the periodic ticks back and invokes the
scheduler, which then schedules the task associated with the timeout. This is how the
tickless kernel removes the periodic tick and saves power when idle.

Delays and sleep in the kernel
Without going deep into the details, there are two types of delays, depending on the context
your code runs in: atomic or nonatomic. The mandatory header to handle delays in the
kernel is #include <linux/delay>.

Atomic context
Tasks in the atomic context (such as ISR) can't sleep, and can't be scheduled; it is the reason
why busy-wait loops are used for delaying purposes in an atomic context. The kernel
exposes the Xdelay family of functions that will spend time in a busy loop, long (based on
jiffies) enough to achieve the desired delay:

ndelay(unsigned long nsecs)

udelay(unsigned long usecs)

mdelay(unsigned long msecs)

Kernel Facilities and Helper Functions

[62]

You should always use udelay() since ndelay() precision depends on how accurate your
hardware timer is (not always the case on an embedded SOC). Use of mdelay() is also
discouraged.

Timer handlers (callbacks) are executed in an atomic context, meaning that sleeping is not
allowed at all. By sleeping, I mean any function that may result in sending the caller to sleep,
such as allocating memory, locking a mutex, an explicit call to sleep() function, and so on.

Nonatomic context
In a nonatomic context, the kernel provides the sleep[_range] family of functions and
which function to use depends on how long you need to delay by:

udelay(unsigned long usecs): Busy-wait loop based. You should use this
function if you need to sleep for a few µsecs (< ~10 us).
usleep_range(unsigned long min, unsigned long max): Relies on
hrtimers, and it is recommended to let this sleep for few ~µsecs or small msecs (10
us - 20 ms), avoiding the busy-wait loop of udelay().
msleep(unsigned long msecs): Backed by jiffies/legacy_timers. You should
use this for larger, msecs sleep (10 ms+).

Sleep and delay topics are well explained in Documentation/timers/timers-
howto.txt in the kernel source.

Kernel locking mechanism
Locking is a mechanism that helps shares resources between different threads or processes.
A shared resource is a data or a device that can be accessed by at least two user,
simultaneously or no. Locking mechanisms prevent abusive access, for example, a process
writing data when another one is reading in the same place, or two processes accessing the
same device (the same GPIO for example). The kernel provides several locking
mechanisms. The most important are:

Mutex
Semaphore
Spinlock

Kernel Facilities and Helper Functions

[63]

We will only learn about mutexes and spinlock, since they are widely used in device
drivers.

Mutex
Mutual exclusion (mutex) is the de facto most used locking mechanism. To understand
how it works, let's see what its structure looks like in include/linux/mutex.h:

struct mutex {

 /* 1: unlocked, 0: locked, negative: locked, possible waiters */

 atomic_t count;

 spinlock_t wait_lock;

 struct list_head wait_list;

 [...]

};

As we have seen in the section wait queue, there is also a list type field in the structure:
wait_list. The principle of sleeping is the same.

Contenders are removed from the scheduler run queue and put onto the wait list
(wait_list) in a sleep state. The kernel then schedules and executes other tasks. When the
lock is released, a waiter in the wait queue is woken, moved off the wait_list, and
scheduled back.

Mutex API
Using mutex requires only a few basic functions:

Declare

Statically:

DEFINE_MUTEX(my_mutex);

Dynamically:

struct mutex my_mutex;

mutex_init(&my_mutex);

Kernel Facilities and Helper Functions

[64]

Acquire and release

Lock:

void mutex_lock(struct mutex *lock);

int mutex_lock_interruptible(struct mutex *lock);

int mutex_lock_killable(struct mutex *lock);

Unlock:

void mutex_unlock(struct mutex *lock);

Sometimes, you may only need to check whether a mutex is locked or not. For that purpose,
you can use the int mutex_is_locked(struct mutex *lock) function.

int mutex_is_locked(struct mutex *lock);

What this function does is just check whether the mutex's owner is empty (NULL) or not.
There is also mutex_trylock, that acquires the mutex if it is not already locked, and
returns 1; otherwise, it returns 0:

int mutex_trylock(struct mutex *lock);

As with the wait queue's interruptible family function, mutex_lock_interruptible(),
which is recommended, will result in the driver being able to be interrupted by any signal,
whereas with mutex_lock_killable(), only signals killing the process can interrupt the
driver.

You should be very careful with mutex_lock(), and use it when you can guarantee that
the mutex will be released, whatever happens. In the user context, it is recommended you
always use mutex_lock_interruptible() to acquire the mutex, since mutex_lock()
will not return if a signal is received (even a ctrl + c).

Here is an example of a mutex implementation:

struct mutex my_mutex;

mutex_init(&my_mutex);

/* inside a work or a thread */

mutex_lock(&my_mutex);

access_shared_memory();

mutex_unlock(&my_mutex);

Kernel Facilities and Helper Functions

[65]

Please have a look at include/linux/mutex.h in the kernel source to see the strict rules
you must respect with mutexes. Here are some of them:

Only one task can hold the mutex at a time; this is actually not a rule, but a fact
Multiple unlocks are not permitted
They must be initialized through the API
A task holding the mutex may not exit, since the mutex will remain locked, and
possible contenders will wait (will sleep) forever
Memory areas where held locks reside must not be freed
Held mutexes must not be reinitialized
Since they involve rescheduling, mutexes may not be used in atomic contexts,
such as tasklets and timers

As with wait_queue, there is no polling mechanism with mutexes. Every
time that mutex_unlock is called on a mutex, the kernel checks for
waiters in wait_list. If any, one (and only one) of them is awakened and
scheduled; they are woken in the same order in which they were put to
sleep.

Spinlock
Like mutex, spinlock is a mutual exclusion mechanism; it only has two states:

locked (aquired)
unlocked (released)

Any thread that needs to acquire the spinlock will active loop until the lock is acquired,
which breaks out of the loop. This is the point where mutex and spinlock differ. Since
spinlock heavily consumes the CPU while looping, it should be used for very quick
acquires, especially when time to hold the spinlock is less than time to reschedule. Spinlock
should be released as soon as the critical task is done.

In order to avoid wasting CPU time by scheduling a thread that may probably spin, trying
to acquire a lock held by another thread moved off the run queue, the kernel disables
preemption whenever a code holding a spinlock is running. With preemption disabled, we
prevent the spinlock holder from being moved off the run queue, which could lead waiting
processes to spin for a long time and consume CPU.

Kernel Facilities and Helper Functions

[66]

As long as one holds a spinlock, other tasks may be spinning while waiting on it. By using
spinlock, you asserts and guarantee that it will not be held for a long time. You can say it is
better to spin in a loop, wasting CPU time, than the cost of sleeping your thread, context-
shifting to another thread or process, and being woken up afterward. Spinning on a
processor means no other task can run on that processor; it then makes no sense to use
spinlock on a single core machine. In the best case, you will slow down the system; in the
worst case, you will deadlock, as with mutexes. For this reason, the kernel just disables
preemption in response to the spin_lock(spinlock_t *lock) function on single
processor. On a single processor (core) system, you should use spin_lock_irqsave() and
spin_unlock_irqrestore(), which will respectively disable the interrupts on the CPU,
preventing interrupt concurrency.

Since you do not know in advance what system you will write the driver for, it is
recommended you acquire a spinlock using spin_lock_irqsave(spinlock_t *lock,
unsigned long flags), which disables interrupts on the current processor (the processor
where it is called) before taking the spinlock. spin_lock_irqsave internally calls
local_irq_save(flags);, an architecture-dependent function to save the IRQ status,
and preempt_disable() to disable preemption on the relevant CPU. You should then
release the lock with spin_unlock_irqrestore(), which does the reverse operations that
we previously enumerated. This is a code that does lock acquire and release. It is an IRQ
handler, but let's just focus on the lock aspect. We will discuss more about IRQ handlers in
the next section:

/* some where */

spinlock_t my_spinlock;

spin_lock_init(my_spinlock);

static irqreturn_t my_irq_handler(int irq, void *data)

{

 unsigned long status, flags;

 spin_lock_irqsave(&my_spinlock, flags);

 status = access_shared_resources();

 spin_unlock_irqrestore(&gpio->slock, flags);

 return IRQ_HANDLED;

}

Kernel Facilities and Helper Functions

[67]

Spinlock versus mutexes
Used for concurrency in the kernel, spinlocks and mutexes each have their own objectives:

Mutexes protect the process's critical resource, whereas spinlock protects the IRQ
handler's critical sections
Mutexes put contenders to sleep until the lock is acquired, whereas spinlocks
infinitely spin in a loop (consuming CPU) until the lock is acquired
Because of the previous point, you can't hold spinlock for a long time, since
waiters will waste CPU time waiting for the lock, whereas a mutex can be held as
long as the resource needs to be protected, since contenders are put to sleep in a
wait queue

When dealing with spinlocks, please keep in mind that preemption is
disabled only for threads holding spinlocks, not for spinning waiters.

Work deferring mechanism
Deferring is a method by which you schedule a piece of work to be executed in the future.
It's a way to report an action later. Obviously, the kernel provides facilities to implement
such a mechanism; it allows you to defer functions, whatever their type, to be called and
executed later. There are three of them in the kernel:

SoftIRQs: Executed in an atomic context
Tasklets: Executed in an atomic context
Workqueues: Executed in a process context

Softirqs and ksoftirqd
Software IRQ (softirq), or software interrupt is a deferring mechanism used only for very
fast processing, since it runs with a disabled scheduler (in an interrupt context). You'll
rarely (almost never) want to deal with softirq directly. There are only networks and block
device subsystems using softirq. Tasklets are an instantiation of softirqs, and will be
sufficient in almost every case that you feel the need to use softirqs.

Kernel Facilities and Helper Functions

[68]

ksoftirqd
In most cases, softirqs are scheduled in hardware interrupts, which may arrive very quickly,
faster than they can be serviced. They are then queued by the kernel in order to be
processed later. Ksoftirqds are responsible for late execution (process context this time). A
ksoftirqd is a per-CPU kernel thread raised to handle unserviced software interrupts:

Kernel Facilities and Helper Functions

[69]

In the preceding top sample from my personal computer, you can see ksoftirqd/n
entries, where n is the CPU number that the ksoftirqd runs on. CPU-consuming ksoftirqd
may indicate an overloaded system or a system under interrupts storm, which is never
good. You can have a look at kernel/softirq.c to see how ksoftirqds are designed.

Tasklets
Tasklets are a bottom-half (we will see what this means later) mechanism built on top of
softirqs. They are represented in the kernel as instances of struct tasklet_struct:

struct tasklet_struct

{

 struct tasklet_struct *next;

 unsigned long state;

 atomic_t count;

 void (*func)(unsigned long);

 unsigned long data;

};

Tasklets are not re-entrant by nature. A code is called reentrant if it can be interrupted
anywhere in the middle of its execution, and then be safely called again. Tasklets are
designed such that a tasklet can run on one and only one CPU simultaneously (even on an
SMP system), which is the CPU it was scheduled on, but different tasklets may be run
simultaneously on different CPUs. The tasklet API is quite basic and intuitive.

Declaring a tasklet
Dynamically:

void tasklet_init(struct tasklet_struct *t,

 void (*func)(unsigned long), unsigned long data);

Statically:

DECLARE_TASKLET(tasklet_example, tasklet_function, tasklet_data);

DECLARE_TASKLET_DISABLED(name, func, data);

Kernel Facilities and Helper Functions

[70]

There is one difference between the two functions; the former creates a tasklet already
enabled and ready to be scheduled without any other function call, done by setting the
count field to 0, whereas the latter creates a tasklet disabled (done by setting count to 1),
on which one has to call tasklet_enable() before the tasklet can be schedulable:

#define DECLARE_TASKLET(name, func, data) \

 struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }

#define DECLARE_TASKLET_DISABLED(name, func, data) \

 struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(1), func, data }

Globally, setting the count field to 0 means that the tasklet is disabled and cannot be
executed, whereas a nonzero value means the opposite.

Enabling and disabling a tasklet
There is one function to enable a tasklet:

void tasklet_enable(struct tasklet_struct *);

tasklet_enable simply enables the tasklet. In older kernel versions, you may find void
tasklet_hi_enable(struct tasklet_struct *) is used, but those two functions do
exactly the same thing. To disable a tasklet, call:

void tasklet_disable(struct tasklet_struct *);

You can also call:

void tasklet_disable_nosync(struct tasklet_struct *);

tasklet_disable will disable the tasklet and return only when the tasklet has terminated
its execution (if it was running), whereas tasklet_disable_nosync returns immediately,
even if the termination has not occurred.

Tasklet scheduling
There are two scheduling functions for tasklet, depending on whether your tasklet has
normal or higher priority:

void tasklet_schedule(struct tasklet_struct *t);

void tasklet_hi_schedule(struct tasklet_struct *t);

Kernel Facilities and Helper Functions

[71]

The kernel maintains normal priority and high priority tasklets in two different lists.
tasklet_schedule adds the tasklet into the normal priority list, scheduling the associated
softirq with a TASKLET_SOFTIRQ flag. With tasklet_hi_schedule, the tasklet is added
into the high priority list, scheduling the associated softirq with a HI_SOFTIRQ flag. High
priority tasklets are meant to be used for soft interrupt handlers with low latency
requirements. There are some properties associated with tasklets you should know:

Calling tasklet_schedule on a tasklet already scheduled, but whose execution
has not started, will do nothing, resulting in the tasklet being executed only once.
tasklet_schedule can be called in a tasklet, meaning that a tasklet can
reschedule itself.
High priority tasklets are always executed before normal ones. Abusive use of
high priority tasks will increase the system latency. Only use them for really
quick stuff.

You can stop a tasklet using the tasklet_kill function that will prevent the tasklet from
running again or wait for its completion before killing it if the tasklet is currently scheduled
to run:

void tasklet_kill(struct tasklet_struct *t);

Let us check. Look at the following example:

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/interrupt.h> /* for tasklets API */

char tasklet_data[]="We use a string; but it could be pointer to a

structure";

/* Tasklet handler, that just print the data */

void tasklet_work(unsigned long data)

{

 printk("%s\n", (char *)data);

}

DECLARE_TASKLET(my_tasklet, tasklet_function, (unsigned long)

tasklet_data);

static int __init my_init(void)

{

 /*

 * Schedule the handler.

 * Tasklet arealso scheduled from interrupt handler

 */

Kernel Facilities and Helper Functions

[72]

 tasklet_schedule(&my_tasklet);

 return 0;

}

void my_exit(void)

{

 tasklet_kill(&my_tasklet);

}

module_init(my_init);

module_exit(my_exit);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

Work queues
Added since Linux kernel 2.6, the most used and simple deferring mechanism is the work
queue. It is the last one we will talk about in this chapter. As a deferring mechanism, it takes
an opposite approach to the others we've seen, running only in a preemptible context. It is
the only choice when you need to sleep in your bottom half (I will explain what a bottom
half is later in the next section). By sleep, I mean process I/O data, hold mutexes, delay, and
all the other tasks that may lead to sleep or move the task off the run queue.

Keep in mind that work queues are built on top of kernel threads, and this is the reason
why I decided not to talk about the kernel thread as a deferring mechanism at all. However,
there are two ways to deal with work queues in the kernel. First, there is a default shared
work queue, handled by a set of kernel threads, each running on a CPU. Once you have
work to schedule, you queue that work into the global work queue, which will be executed
at the appropriate moment. The other method is to run the work queue in a dedicated
kernel thread. It means whenever your work queue handler needs to be executed, your
kernel thread is woken up to handle it, instead of one of the default predefined threads.

Structures and functions to call are different, depending on whether you chose a shared
work queue or dedicated ones.

Kernel-global workqueue – the shared queue
Unless you have no choice, or you need critical performance, or you need to control
everything from the work queue initialization to the work scheduling, and if you only
submit tasks occasionally, you should use the shared work queue provided by the kernel.
With that queue being shared over the system, you should be nice, and should not
monopolize the queue for a long time.

Kernel Facilities and Helper Functions

[73]

Since the execution of the pending task on the queue is serialized on each CPU, you should
not sleep for a long time because no other task on the queue will run until you wake up.
You won't even know who you share the work queue with, so don't be surprised if your
task takes longer to get the CPU. Work in the shared work queues is executed in a per-CPU
thread called events/n, created by the kernel.

In this case, the work must also be initialized with the INIT_WORK macro. Since we are
going to use the shared work queue, there is no need to create a work queue structure. We
only need the work_struct structure that will be passed as an argument. There are three
functions to schedule work on the shared work queue:

The version that ties the work on the current CPU:

int schedule_work(struct work_struct *work);

The same but delayed function:

static inline bool schedule_delayed_work(struct delayed_work

*dwork,

 unsigned long delay)

The function that actually schedules the work on a given CPU:

int schedule_work_on(int cpu, struct work_struct *work);

The same as shown previously, but with a delay:

int scheduled_delayed_work_on(int cpu, struct delayed_work *dwork,

unsigned long delay);

All of these functions schedule the work given as an argument on to the system's shared
work queue system_wq, defined in kernel/workqueue.c:

struct workqueue_struct *system_wq __read_mostly;

EXPORT_SYMBOL(system_wq);

A work already submitted to the shared queue can be cancelled with the
cancel_delayed_work function. You can flush the shared workqueue with:

void flush_scheduled_work(void);

Kernel Facilities and Helper Functions

[74]

Since the queue is shared over the system, one can't really know how long
flush_scheduled_work() may last before it returns:

#include <linux/module.h>

#include <linux/init.h>

#include <linux/sched.h> /* for sleep */

#include <linux/wait.h> /* for wait queue */

#include <linux/time.h>

#include <linux/delay.h>

#include <linux/slab.h> /* for kmalloc() */

#include <linux/workqueue.h>

//static DECLARE_WAIT_QUEUE_HEAD(my_wq);

static int sleep = 0;

struct work_data {

 struct work_struct my_work;

 wait_queue_head_t my_wq;

 int the_data;

};

static void work_handler(struct work_struct *work)

{

 struct work_data *my_data = container_of(work, \

 struct work_data, my_work);

 printk("Work queue module handler: %s, data is %d\n", __FUNCTION__,

my_data->the_data);

 msleep(2000);

 wake_up_interruptible(&my_data->my_wq);

 kfree(my_data);

}

static int __init my_init(void)

{

 struct work_data * my_data;

 my_data = kmalloc(sizeof(struct work_data), GFP_KERNEL);

 my_data->the_data = 34;

 INIT_WORK(&my_data->my_work, work_handler);

 init_waitqueue_head(&my_data->my_wq);

 schedule_work(&my_data->my_work);

 printk("I'm goint to sleep ...\n");

 wait_event_interruptible(my_data->my_wq, sleep != 0);

 printk("I am Waked up...\n");

 return 0;

}

Kernel Facilities and Helper Functions

[75]

static void __exit my_exit(void)

{

 printk("Work queue module exit: %s %d\n", __FUNCTION__, __LINE__);

}

module_init(my_init);

module_exit(my_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com> ");

MODULE_DESCRIPTION("Shared workqueue");

In order to pass data to my work queue handler, you may have noticed
that in both examples, I've embedded my work_struct structure inside
my custom data structure, and used container_of to retrieve it. It is the
common way to pass data to the work queue handler.

Dedicated work queue
Here, the work queue is represented as an instance of struct workqueue_struct. The
work to be queued into the work queue is represented as an instance of struct
work_struct. There are four steps involved prior to scheduling your work in your own
kernel thread:

Declare/initialize a struct workqueue_struct.1.
Create your work function.2.
Create a struct work_struct so that your work function will be embedded3.
into it.
Embed your work function in the work_struct.4.

Programming syntax

The following functions are defined in include/linux/workqueue.h:

Declare work and work queue:

struct workqueue_struct *myqueue;

struct work_struct thework;

Define the worker function (the handler):

void dowork(void *data) { /* Code goes here */ };

Kernel Facilities and Helper Functions

[76]

Initialize our work queue and embed our work into:

myqueue = create_singlethread_workqueue("mywork");

INIT_WORK(&thework, dowork, <data-pointer>);

We could have also created our work queues through a macro called
create_workqueue. The difference between create_workqueue and
create_singlethread_workqueue is that the former will create a work queue
that in turn will create a separate kernel thread on each and every processor
available.

Scheduling work:

queue_work(myqueue, &thework);

Queue after the given delay to the given worker thread:

 queue_dalayed_work(myqueue, &thework, <delay>);

These functions return false if the work was already on a queue and true if
otherwise. delay represents the number of jiffies to wait before queueing. You
may use the helper function msecs_to_jiffies in order to convert the standard
ms delay into jiffies. For example, to queue a work after 5 ms, you can use
queue_delayed_work(myqueue, &thework, msecs_to_jiffies(5));.

Wait on all pending work on the given work queue:

void flush_workqueue(struct workqueue_struct *wq)

flush_workqueue sleeps until all queued work has finished their execution. New
incoming (enqueued) work does not affect the sleep. One may typically use this in
driver shutdown handlers.

Cleanup:

Use cancel_work_sync() or cancel_delayed_work_sync for synchronous
cancellation, which will cancel the work if it is not already running, or block until
the work has completed. The work will be cancelled even if it requeues itself. You
must also ensure that the work queue on which the work was last queued can't be
destroyed before the handler returns. These functions are to be used respectively
for nondelayed or delayed work:

int cancel_work_sync(struct work_struct *work);

int cancel_delayed_work_sync(struct delayed_work *dwork);

Kernel Facilities and Helper Functions

[77]

Since Linux kernel v4.8, it is possible to use cancel_work or cancel_delayed_work,
which are asynchronous forms of cancellation. One must check whether the function
returns true or no, and makes sure the work does not requeue itself. You must then
explicitly flush the work queue:

if (!cancel_delayed_work(&thework)){

flush_workqueue(myqueue);

destroy_workqueue(myqueue);

}

The other is a different version of the same method and will create only a single thread for
all the processors. In case you need a delay before the work is enqueued, feel free to use the
following work initialization macro:

INIT_DELAYED_WORK(_work, _func);

INIT_DELAYED_WORK_DEFERRABLE(_work, _func);

Using the preceding macros would imply that you should use the following functions to
queue or schedule the work in the work queue:

int queue_delayed_work(struct workqueue_struct *wq,

 struct delayed_work *dwork, unsigned long delay)

queue_work ties the work to the current CPU. You can specify the CPU on which the
handler should run using the queue_work_on function:

int queue_work_on(int cpu, struct workqueue_struct *wq,

 struct work_struct *work);

For delayed work, you can use:

int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,

 struct delayed_work *dwork, unsigned long delay);

The following is an example of using dedicated work queue:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/workqueue.h> /* for work queue */

#include <linux/slab.h> /* for kmalloc() */

struct workqueue_struct *wq;

struct work_data {

 struct work_struct my_work;

 int the_data;

};

static void work_handler(struct work_struct *work)

{

Kernel Facilities and Helper Functions

[78]

 struct work_data * my_data = container_of(work,

 struct work_data, my_work);

 printk("Work queue module handler: %s, data is %d\n",

 __FUNCTION__, my_data->the_data);

 kfree(my_data);

}

static int __init my_init(void)

{

 struct work_data * my_data;

 printk("Work queue module init: %s %d\n",

 __FUNCTION__, __LINE__);

 wq = create_singlethread_workqueue("my_single_thread");

 my_data = kmalloc(sizeof(struct work_data), GFP_KERNEL);

 my_data->the_data = 34;

 INIT_WORK(&my_data->my_work, work_handler);

 queue_work(wq, &my_data->my_work);

 return 0;

}

static void __exit my_exit(void)

{

 flush_workqueue(wq);

 destroy_workqueue(wq);

 printk("Work queue module exit: %s %d\n",

 __FUNCTION__, __LINE__);

}

module_init(my_init);

module_exit(my_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

Predefined (shared) workqueue and standard
workqueue functions
The predefined work queue is defined in kernel/workqueue.c as follows:

struct workqueue_struct *system_wq __read_mostly;

It is nothing more than a standard work for which the kernel provides a custom API that
simply wraps around the standard one.

Kernel Facilities and Helper Functions

[79]

Comparisons between kernel predefined work queue functions and standard work queue
functions are mentioned as follows:

Predefined work queue function Equivalent standard work queue function

schedule_work(w) queue_work(keventd_wq,w)

schedule_delayed_work(w,d) queue_delayed_work(keventd_wq,w,d)(on
any CPU)

schedule_delayed_work_on(cpu,w,d) queue_delayed_work(keventd_wq,w,d)

(on a given CPU)

flush_scheduled_work() flush_workqueue(keventd_wq)

Kernel threads
Work queues run on top of kernel threads. You already use kernel threads when you use
work queues. It is the reason why I have decided not to talk about the kernel thread API.

Kernel interruption mechanism
An interrupt is the way a device halts the kernel, telling it that something interesting or
important has happened. These are called IRQs on Linux systems. The main advantage
interrupts offer is to avoid devices polling. It is up to the device to tell if there is a change in
its state; it is not up to us to poll it.

In order to get notified when an interrupt occurs, you need to register to that IRQ,
providing a function called interrupt handler that will be called every time that interrupt is
raised.

Registering an interrupt handler
You can register a callback to be run when the interruption (or interrupt line) you are
interested in gets fired. You can achieve that with the function request_irq(), declared in
<linux/interrupt.h>:

int request_irq(unsigned int irq, irq_handler_t handler,

 unsigned long flags, const char *name, void *dev)

Kernel Facilities and Helper Functions

[80]

request_irq() may fail, and return 0 on success. Other elements of the preceding code
are outlined in detail as follows:

flags: These should be a bitmask of the masks defined in
<linux/interrupt.h>. The most used are:

IRQF_TIMER: Informs the kernel that this handler is originated by
a system timer interrupt.
IRQF_SHARED: Used for interrupt lines that can be shared by two
or more devices. Each device sharing the same line must have this
flag set. If omitted, only one handler can be registered for the
specified IRQ line.
IRQF_ONESHOT: Used essentially in the threaded IRQ. It instructs
the kernel not to re-enable the interrupt when the hardirq handler
has finished. It will remain disabled until the threaded handler has
been run.
In older kernel versions (until v2.6.35), there were IRQF_DISABLED
flags, which asked the kernel to disable all interrupts when the
handler is running. This flag is no longer used.

name: This is used by the kernel to identify your driver in /proc/interrupts
and /proc/irq.
dev: Its primary goal is to pass as argument to the handler. This should be unique
to each registered handler, since it is used to identify the device. It can be NULL
for nonshared IRQs, but not for shared ones. The common way of using it is to
provide a device structure, since it is both unique and may potentially be useful
to the handler. That said, a pointer to any per-device data structure is sufficient:

struct my_data {

 struct input_dev *idev;

 struct i2c_client *client;

 char name[64];

 char phys[32];

 };

 static irqreturn_t my_irq_handler(int irq, void *dev_id)

 {

 struct my_data *md = dev_id;

 unsigned char nextstate = read_state(lp);

 /* Check whether my device raised the irq or no */

 [...]

 return IRQ_HANDLED;

 }

 /* some where in the code, in the probe function */

 int ret;

Kernel Facilities and Helper Functions

[81]

 struct my_data *md;

 md = kzalloc(sizeof(*md), GFP_KERNEL);

 ret = request_irq(client->irq, my_irq_handler,

 IRQF_TRIGGER_LOW | IRQF_ONESHOT,

 DRV_NAME, md);

 /* far in the release function */

 free_irq(client->irq, md);

handler: This is the callback function that will run when the interrupt is fired.
An interrupt handler's structure looks like:

static irqreturn_t my_irq_handler(int irq, void *dev)

This contains the following code elements:
irq: The numeric value of the IRQ (the same used in
request_irq).
dev: The same as used in request_irq.

Both parameters are given to your handler by the kernel. There are only two values the
handler can return, depending on whether your device originated the IRQ or not:

IRQ_NONE: Your device is not the originator of that interrupt (it especially
happens on shared IRQ lines)
IRQ_HANDLED: Your device caused the interrupt

Depending on the processing, one may use the IRQ_RETVAL(val) macro, which will return
IRQ_HANDLED if the value is nonzero, or IRQ_NONE otherwise.

When writing the interrupt handler, you don't have to worry about
reentrancy, since the IRQ line serviced is disabled on all processors by the
kernel in order to avoid recursive interrupt.

The associated function to free the previously registered handler is:

void free_irq(unsigned int irq, void *dev)

If the specified IRQ is not shared, free_irq will not only remove the handler, but will also
disable the line. If it is shared, only the handler identified through dev (which should be the
same as that used in request_irq) is removed, but the interrupt line still remains, and will
be disabled only when the last handler is removed. free_irq will block until any executing
interrupts for the specified IRQ have completed. You must then avoid both request_irq
and free_irq in the interrupt context.

Kernel Facilities and Helper Functions

[82]

Interrupt handler and lock
It goes without saying that you are in an atomic context and must only use spinlock for
concurrency. Whenever there is global data accessible by both user code (the user task; that
is, the system call) and interrupt code, this shared data should be protected by
spin_lock_irqsave() in the user code. Let's see why we can't just use spin_lock. An
interrupt handler will always have priority on the user task, even if that task is holding a
spinlock. Simply disabling IRQ is not sufficient. An interrupt may happen on another CPU.
It would be a disaster if a user task updating the data gets interrupted by an interrupt
handler trying to access the same data. Using spin_lock_irqsave() will disable all
interrupts on the local CPU, preventing the system call from being interrupted by any kind
of interrupt:

ssize_t my_read(struct file *filp, char __user *buf, size_t count,

 loff_t *f_pos)

{

 unsigned long flags;

 /* some stuff */

 [...]

 unsigned long flags;

 spin_lock_irqsave(&my_lock, flags);

 data++;

 spin_unlock_irqrestore(&my_lock, flags)

 [...]

}

static irqreturn_t my_interrupt_handler(int irq, void *p)

{

 /*

 * preemption is disabled when running interrupt handler

 * also, the serviced irq line is disabled until the handler has

completed

 * no need then to disable all other irq. We just use spin_lock and

 * spin_unlock

 */

 spin_lock(&my_lock);

 /* process data */

 [...]

 spin_unlock(&my_lock);

 return IRQ_HANDLED;

}

When sharing data between different interrupt handlers (that is, the same driver managing
two or more devices, each having its own IRQ line), one should also protect that data with
spin_lock_irqsave() in those handlers, in order to prevent the other IRQs from being
triggered and uselessly spinning.

Kernel Facilities and Helper Functions

[83]

Concept of bottom halves
Bottom halves are mechanisms by which you split interrupt handlers into two part. This
introduces another term, which is top half. Before discussing each of them, let us talk about
their origin, and what problem they solve.

The problem – interrupt handler design limitations
Whether an interrupt handler holds a spinlock or not, preemption is disabled on the CPU
running that handler. The more one wastes time in the handler, the less CPU is granted to
the other task, which may considerably increase latency of other interrupts and so increase
the latency of the whole system. The challenge is to acknowledge the device that raised the
interrupt as quickly as possible in order to keep the system responsive.

On Linux systems (actually on all OS, by hardware design), any interrupt handler runs with
its current interrupt line disabled on all processors, and sometimes you may need to disable
all interrupts on the CPU actually running the handler, but you definitely don't want to
miss an interrupt. To meet this need, the concept of halves has been introduced.

The solution – bottom halves
This idea consists of splitting the handler into two parts:

The first part, called the top half or hard-IRQ, which is the registered function
using request_irq() that will eventually mask/hide interrupts (on the current
CPU, except the one being serviced since it is already disabled by the kernel
before running the handler) depending on the needs, performs quick and fast
operations (essentially time-sensitive tasks, read/write hardware registers, and
fast processing of this data), schedules the second and next part, and then
acknowledges the line. All interrupts that are disabled must have been re-enabled
just before exiting the bottom half.
The second part, called the bottom half, will process time-consuming stuff, and
run with interrupt re-enabled. This way, you have the chance not to miss an
interrupt.

Kernel Facilities and Helper Functions

[84]

Bottom halves are designed using a work-deferring mechanism, which we have seen
previously. Depending on which one you choose, it may run in a (software) interrupt
context, or in a process context. Bottom halves' mechanisms are:

Softirqs
Tasklets
Workqueues
Threaded IRQs

Softirqs and tasklets execute in a (software) interrupt context (meaning that preemption is
disabled), Workqueues and threaded IRQs are executed in a process (or simply task)
context, and can be preempted, but nothing prevents us from changing their real-time
properties to fit your needs and change their preemption behavior (see CONFIG_PREEMPT or
CONFIG_PREEMPT_VOLUNTARY. This also impacts the whole system). Bottom halves are not
always possible. But when it is possible, it is certainly the best thing to do.

Tasklets as bottom halves
The tasklet deferring mechanism is most used in DMA, network, and block device drivers.
Just try the following command in the kernel source:

 grep -rn tasklet_schedule

Now let's see how to implement such a mechanism in our interrupt handler:

struct my_data {

 int my_int_var;

 struct tasklet_struct the_tasklet;

 int dma_request;

};

static void my_tasklet_work(unsigned long data)

{

 /* Do what ever you want here */

}

struct my_data *md = init_my_data;

/* somewhere in the probe or init function */

[...]

 tasklet_init(&md->the_tasklet, my_tasklet_work,

 (unsigned long)md);

[...]

Kernel Facilities and Helper Functions

[85]

static irqreturn_t my_irq_handler(int irq, void *dev_id)

{

 struct my_data *md = dev_id;

 /* Let's schedule our tasklet */

 tasklet_schedule(&md.dma_tasklet);

 return IRQ_HANDLED;

}

In the preceding sample, our tasklet will execute the function my_tasklet_work().

Workqueue as bottom halves
Let's just start with a sample:

static DECLARE_WAIT_QUEUE_HEAD(my_wq); /* declare and init the wait queue

*/

static struct work_struct my_work;

/* some where in the probe function */

/*

 * work queue initialization. "work_handler" is the call back that will be

 * executed when our work is scheduled.

 */

INIT_WORK(my_work, work_handler);

static irqreturn_t my_interrupt_handler(int irq, void *dev_id)

{

 uint32_t val;

 struct my_data = dev_id;

 val = readl(my_data->reg_base + REG_OFFSET);

 if (val == 0xFFCD45EE)) {

 my_data->done = true;

 wake_up_interruptible(&my_wq);

 } else {

 schedule_work(&my_work);

 }

 return IRQ_HANDLED;

};

Kernel Facilities and Helper Functions

[86]

In the preceding sample, we used either a wait queue or a work queue in order to wake up
a possibly sleeping process waiting for us, or schedule a work depending on the value of a
register. We have no shared data or resource, so there is no need to disable all other IRQs
(spin_lock_irq_disable).

Softirqs as bottom half
As said in the beginning of this chapter, we will not discuss softirq. Tasklets will be enough
everywhere you feel the need to use softirqs. Anyway, let's talk about their defaults.

Softirqs run in a software interrupt context, with preemption disabled, holding the CPU
until they complete. Softirq should be fast; otherwise they may slow the system down.
When, for any reason, a softirq prevents the kernel from scheduling other tasks, any new
incoming softirq will be handled by ksoftirqd threads, running in a process context.

Threaded IRQs
The main goal of threaded IRQs is reducing the time spent with interrupts disabled to a
bare minimum. With threaded IRQs, the way you register an interrupt handler is a bit
simplified. You does not even have to schedule the bottom half yourself. The core does that
for us. The bottom half is then executed in a dedicated kernel thread. We do not use
request_irq() anymore, but request_threaded_irq():

int request_threaded_irq(unsigned int irq, irq_handler_t handler,\

 irq_handler_t thread_fn, \

 unsigned long irqflags, \

 const char *devname, void *dev_id)

Kernel Facilities and Helper Functions

[87]

The request_threaded_irq() function accepts two functions in its parameters:

@handler function: This is the same function as the one registered with
request_irq(). It represents the top-half function, which runs in an atomic
context (or hard-IRQ). If it can process the interrupt faster so that you can get rid
of the bottom half at all, it should return IRQ_HANDLED. But, if the interrupt
processing needs more than 100 µs, as discussed previously, you should use the
bottom half. In this case, it should return IRQ_WAKE_THREAD, which will result in
scheduling the thread_fn function that must have been provided.
@thread_fn function: This represents the bottom half, as you would have
scheduled in your top half. When the hard-IRQ handler (handler function)
function returns IRQ_WAKE_THREAD, the kthread associated with this bottom half
will be scheduled, invoking the thread_fn function when it comes to run the
ktread. The thread_fn function must return IRQ_HANDLED when complete.
After being executed, the kthread will not be rescheduled again until the IRQ is
triggered again and the hard-IRQ returns IRQ_WAKE_THREAD.

Everywhere that you would have used the work queue to schedule the bottom half,
threaded IRQs can be used. handler and thread_fn must be defined in order to have a
proper threaded IRQ. A default hard-IRQ handler will be installed by the kernel if handler
is NULL and thread_fn != NULL (see the following), which will simply return
IRQ_WAKE_THREAD to schedule the bottom half. handler is always called in an interrupt
context, whether it has been provided by yourself or by the kernel by default:

/*

 * Default primary interrupt handler for threaded interrupts. Is

 * assigned as primary handler when request_threaded_irq is called

 * with handler == NULL. Useful for oneshot interrupts.

 */

static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)

{

 return IRQ_WAKE_THREAD;

}

request_threaded_irq(unsigned int irq, irq_handler_t handler,

 irq_handler_t thread_fn, unsigned long irqflags,

 const char *devname, void *dev_id)

{

 [...]

 if (!handler) {

 if (!thread_fn)

 return -EINVAL;

 handler = irq_default_primary_handler;

 }

Kernel Facilities and Helper Functions

[88]

 [...]

}

EXPORT_SYMBOL(request_threaded_irq);

With threaded IRQs, the handler definition does not change, but the way it is registered
changes a little bit.

request_irq(unsigned int irq, irq_handler_t handler, \

 unsigned long flags, const char *name, void *dev)

{

 return request_threaded_irq(irq, handler, NULL, flags, \

 name, dev);

}

Threaded bottom half
The simple following excerpt is a demonstration of how you can implement the threaded
bottom half mechanism:

static irqreturn_t pcf8574_kp_irq_handler(int irq, void *dev_id)

{

 struct custom_data *lp = dev_id;

 unsigned char nextstate = read_state(lp);

 if (lp->laststate != nextstate) {

 int key_down = nextstate < ARRAY_SIZE(lp->btncode);

 unsigned short keycode = key_down ?

 p->btncode[nextstate] : lp->btncode[lp->laststate];

 input_report_key(lp->idev, keycode, key_down);

 input_sync(lp->idev);

 lp->laststate = nextstate;

 }

 return IRQ_HANDLED;

}

static int pcf8574_kp_probe(struct i2c_client *client, \

 const struct i2c_device_id *id)

{

 struct custom_data *lp = init_custom_data();

 [...]

 /*

 * @handler is NULL and @thread_fn != NULL

 * the default primary handler is installed, which will

 * return IRQ_WAKE_THREAD, that will schedule the thread

 * asociated to the bottom half. the bottom half must then

Kernel Facilities and Helper Functions

[89]

 * return IRQ_HANDLED when finished

 */

 ret = request_threaded_irq(client->irq, NULL, \

 pcf8574_kp_irq_handler, \

 IRQF_TRIGGER_LOW | IRQF_ONESHOT, \

 DRV_NAME, lp);

 if (ret) {

 dev_err(&client->dev, "IRQ %d is not free\n", \

 client->irq);

 goto fail_free_device;

 }

 ret = input_register_device(idev);

 [...]

}

When an interrupt handler is executed, the serviced IRQ is always
disabled on all CPUs, and re-enabled when the hard-IRQ (top-half)
finishes. But if for any reason you need the IRQ line not to be re-enabled
after the top half, and to remain disabled until the threaded handler has
been run, you should request the threaded IRQ with the flag
IRQF_ONESHOT enabled (by just doing an OR operation as shown
previously). The IRQ line will then be re-enabled after the bottom half has
finished.

Invoking user-space applications from the
kernel
User-space applications are most of the time called from within the user space by other
applications. Without going deep into the details, let's see an example:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/workqueue.h> /* for work queue */

#include <linux/kmod.h>

static struct delayed_work initiate_shutdown_work;

static void delayed_shutdown(void)

{

 char *cmd = "/sbin/shutdown";

 char *argv[] = {

 cmd,

 "-h",

 "now",

Kernel Facilities and Helper Functions

[90]

 NULL,

 };

 char *envp[] = {

 "HOME=/",

 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",

 NULL,

 };

 call_usermodehelper(cmd, argv, envp, 0);

}

static int __init my_shutdown_init(void)

{

 schedule_delayed_work(&delayed_shutdown, msecs_to_jiffies(200));

 return 0;

}

static void __exit my_shutdown_exit(void)

{

 return;

}

module_init(my_shutdown_init);

module_exit(my_shutdown_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu", <john.madieu@gmail.com>);

MODULE_DESCRIPTION("Simple module that trigger a delayed shut down");

In the preceding example, the API used (call_usermodehelper) is a part of the
Usermode-helper API, with all functions defined in kernel/kmod.c. Its use is quite simple;
just a look inside kmod.c will give you an idea. You may be wondering what this API was
defined for. It is used by the kernel, for example, for module (un)loading and cgroups
management.

Summary
In this chapter, we discussed about the fundamental elements to start driver development,
presenting every mechanism frequently used in drivers. This chapter is very important,
since it discusses topics other chapters in this book rely on. The next chapter for example,
dealing with character devices, will use some of elements discussed in this chapter.

4
Character Device Drivers

Character devices transfer data to or from a user application by means of characters, in a
stream manner (one character after another), like a serial port does. A character device
driver exposes the properties and functionalities of a device by means of a special file in the
/dev directory, which one can use to exchange data between the device and user
application, and also allows you to control the real physical device. This is the basic concept
of Linux that says everything is a file. A character device driver represents the most basic
device driver in the kernel source. Character devices are represented in the kernel as
instances of struct cdev, defined in include/linux/cdev.h:

struct cdev {

 struct kobject kobj;

 struct module *owner;

 const struct file_operations *ops;

 struct list_head list;

 dev_t dev;

 unsigned int count;

};

This chapter will walk through the specificities of character device drivers, explain how
they create, identify, and register the devices with the system, and also give a better
overview of the device file methods, which are methods by which the kernel exposes the
device capabilities to user space, accessible by using file related system calls (read, write,
select, open, close and so on), described in struct file_operations structures,
which you have certainly heard of before.

Character Device Drivers

[92]

The concept behind major and minor
Character devices are populated in the /dev directory. Do note that, they are not only files
present in that directory. A character device file is recognizable to its type, which we can
display thanks to the command ls -l. Major and minor identify and tie the devices with
the drivers. Let us see how it works, by listing the content of the /dev directory (ls -l
/dev):

[...]
drwxr-xr-x 2 root root 160 Mar 21 08:57 input
crw-r----- 1 root kmem 1, 2 Mar 21 08:57 kmem
lrwxrwxrwx 1 root root 28 Mar 21 08:57 log -> /run/systemd/journal/dev-log
crw-rw---- 1 root disk 10, 237 Mar 21 08:57 loop-control
brw-rw---- 1 root disk 7, 0 Mar 21 08:57 loop0
brw-rw---- 1 root disk 7, 1 Mar 21 08:57 loop1
brw-rw---- 1 root disk 7, 2 Mar 21 08:57 loop2
brw-rw---- 1 root disk 7, 3 Mar 21 08:57 loop3

Given the preceding excerpt, the first character of the first column identifies the file type.
Possible values are:

c: This is for character device files
b: This is for block device file
l: This is for symbolic link
d: This is for directory
s: This is for socket
p: This is for named pipe

For b and c file types, the fifth and sixth columns right before the date respect the <X, Y>
pattern. X represents the major, and Y is the minor. For example, the third line is <1, 2>
and the last one is <7, 3>. That is one of the classical methods for identifying a character
device file from user space, as well as its major and minor.

The kernel holds the numbers that identify a device in dev_t type variables, which are
simply u32 (32-bit unsigned long). The major is represented with only 12 bits, whereas the
minor is coded on the 20 remaining bits.

As one can see in include/linux/kdev_t.h, given a dev_t type variable, one may need
to extract the minor or the major. The kernel provides a macro for these purposes:

MAJOR(dev_t dev);

MINOR(dev_t dev);

Character Device Drivers

[93]

On the other hand, you may have a minor and a major, and need to build a dev_t. The
macro you should use is MKDEV(int major, int minor);:

#define MINORBITS 20

#define MINORMASK ((1U << MINORBITS) - 1)

#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))

#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))

#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

The device is registered with a major number that identifies the device, and a minor, which
one may use as an array index to a local list of devices, since one instance of the same driver
may handle several devices while different drivers may handle different devices of the
same type.

Device number allocation and freeing
Device numbers identify device files across the system. That means, there are two ways to
allocate these device numbers (actually major and minor):

Statically: Guessing a major not yet used by another driver using the
register_chrdev_region() function. One should avoid using this as much as
possible. Its prototype looks this:

 int register_chrdev_region(dev_t first, unsigned int count, \

 char *name);

This method returns 0 on success, or a negative error code on failure. first is
made of the major number that we need along with the first minor of the desired
range. One should use MKDEV(ma,mi). count is the number of consecutive device
numbers required, and name should be the name of the associated device or
driver.

Character Device Drivers

[94]

Dynamically: Letting the kernel do the job for us, using the
alloc_chrdev_region() function. This is the recommended way to obtain a
valid device number. Its prototype is as follows:

int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, \

 unsigned int count, char *name);

This method returns 0 on success, or a negative error code on failure. dev is the
ony output parameter. It represents the first number the kernel assigned.
firstminor is the first of the requested range of minor numbers, count the
number of minors one requires, and name should be the name of the associated
device or driver.

The difference between the two is that with the former, one should know in advance what
number we need. This is registration: one tells the kernel what device numbers we want.
This may be used for pedagogic purposes, and works as long as the only user of the driver
is you. When it comes to loading the driver on another machine, there is no guarantee the
chosen number is free on that machine, and this will lead to conflicts and trouble. The
second method is cleaner and much safer, since the kernel is responsible for guessing the
right numbers for us. We do not even have to care about what the behavior would be on
loading the module on to another machine, since the kernel will adapt accordingly.

Anyway, the preceding functions are generally not called directly from the driver, but
masked by the framework on which the driver relies (IIO framework, input framework,
RTC, and so on), by means of dedicated API. These frameworks are all discussed in further
chapters in the book.

Introduction to device file operations
Operations that one can perform on files depend on the drivers that manage those files.
Such operations are defined in the kernel as instances of struct file_operations.
struct file_operations exposes a set of callbacks that will handle any user-space
system call on a file. For example, if one wants users to be able to perform a write on the
file representing our device, one must implement the callback corresponding to that write
function and add it into the struct file_operations that will be tied to your device.
Let's fill in a file operations structure:

struct file_operations {

 struct module *owner;

 loff_t (*llseek) (struct file *, loff_t, int);

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t

Character Device Drivers

[95]

*);

 unsigned int (*poll) (struct file *, struct poll_table_struct *);

 int (*mmap) (struct file *, struct vm_area_struct *);

 int (*open) (struct inode *, struct file *);

 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

 int (*release) (struct inode *, struct file *);

 int (*fsync) (struct file *, loff_t, loff_t, int datasync);

 int (*fasync) (int, struct file *, int);

 int (*lock) (struct file *, int, struct file_lock *);

 int (*flock) (struct file *, int, struct file_lock *);

 [...]

};

The preceding excerpt only lists important methods of the structure, especially the ones that
are relevant for the needs of this book. One can find the full description in
include/linux/fs.h in kernel sources. Each of these callbacks is linked with a system
call, and none of them is mandatory. When a user code calls a files-related system call on a
given file, the kernel looks for the driver responsible for that file (especially the one that
created the file), locates its struct file_operations structure, and checks whether the
method that matches the system call is defined or not. If yes, it simply runs it. If not, it
returns an error code that varies depending on the system call. For example, an undefined
(*mmap) method will return -ENODEV to user, whereas an undefined (*write) method
will return -EINVAL.

File representation in the kernel
The kernel describes files as instances of struct inode (not struct file) structure, defined in
include/linux/fs.h:

struct inode {

 [...]

 struct pipe_inode_info *i_pipe; /* Set and used if this is a

 *linux kernel pipe */

 struct block_device *i_bdev; /* Set and used if this is a

 * a block device */

 struct cdev *i_cdev; /* Set and used if this is a

 * character device */

 [...]

}

Character Device Drivers

[96]

The struct inode is a filesystem data structure holding information, which is only
relevant to the OS, about a file (whatever its type, character, block, pipe, and so on) or
directory (yes!! from a kernel point of view, a directory is a file that on entry points to other
files) on disk.

The struct file structure (also defined in include/linux/fs.h) is actually a higher
level of file description that represents an open file in the kernel and which relies on the
lower struct inode data structure:

struct file {

 [...]

 struct path f_path; /* Path to the file */

 struct inode *f_inode; /* inode associated to this file */

 const struct file_operations *f_op;/* operations that can be

 * performed on this file

 */

 loff_t f_pos; /* Position of the cursor in

 * this file */

 /* needed for tty driver, and maybe others */

 void *private_data; /* private data that driver can set

 * in order to share some data between file

 * operations. This can point to any data

 * structure.

 */

[...]

}

The difference between struct inode and struct file is that an inode doesn't track the
current position within the file or the current mode. It only contains stuff that helps the OS
find the contents of the underlying file structure (pipe, directory, regular disk file,
block/character device file, and so on). On the other hand, the struct file is used as a
generic structure (it actually holds a pointer to a struct inode structure) that represents
and open file and provides a set of functions related to methods one can perform on the
underlying file structure. Such methods are: open, write, seek, read, select, and so on.
All this reinforces the philosophy of UNIX systems that says everything is file.

In other words, a struct inode represents a file in the kernel, and a struct file
describes it when it is actually open. There may be different file descriptors that represent
the same file opened several times, but these will point to the same inode.

Character Device Drivers

[97]

Allocating and registering a character device
Character devices are represented in the kernel as instances of struct cdev. When writing
a character device driver, your goal is to finally create and register an instance of that
structure associated with a struct file_operations, exposing a set of operations
(functions) the user-space can perform on the device. To reach that goal, there are some
steps we must go through, which are as follows:

Reserve a major and a range of minors with alloc_chrdev_region().1.
Create a class for your devices with class_create(), visible in /sys/class/.2.
Set up a struct file_operation (to be given to cdev_init), and for each3.
device one needs to create, call cdev_init() and cdev_add() to register the
device.
Then create a device_create() for each device, with a proper name. It will4.
result in your device being created in the /dev directory:

#define EEP_NBANK 8

#define EEP_DEVICE_NAME "eep-mem"

#define EEP_CLASS "eep-class"

struct class *eep_class;

struct cdev eep_cdev[EEP_NBANK];

dev_t dev_num;

static int __init my_init(void)

{

 int i;

 dev_t curr_dev;

 /* Request the kernel for EEP_NBANK devices */

 alloc_chrdev_region(&dev_num, 0, EEP_NBANK, EEP_DEVICE_NAME);

 /* Let's create our device's class, visible in /sys/class */

 eep_class = class_create(THIS_MODULE, EEP_CLASS);

 /* Each eeprom bank represented as a char device (cdev) */

 for (i = 0; i < EEP_NBANK; i++) {

 /* Tie file_operations to the cdev */

 cdev_init(&my_cdev[i], &eep_fops);

 eep_cdev[i].owner = THIS_MODULE;

 /* Device number to use to add cdev to the core */

 curr_dev = MKDEV(MAJOR(dev_num), MINOR(dev_num) + i);

Character Device Drivers

[98]

 /* Now make the device live for the users to access */

 cdev_add(&eep_cdev[i], curr_dev, 1);

 /* create a device node each device /dev/eep-mem0, /dev/eep-mem1,

 * With our class used here, devices can also be viewed under

 * /sys/class/eep-class.

 */

 device_create(eep_class,

 NULL, /* no parent device */

 curr_dev,

 NULL, /* no additional data */

 EEP_DEVICE_NAME "%d", i); /* eep-mem[0-7] */

 }

 return 0;

}

Writing file operations
After introducing the preceding file operations, it is time to implement them in order to
enhance the driver capabilities and expose the device's methods to the user space (by means
of system calls or course). Each of these methods has its particularities, which we will
highlight in this section.

Exchanging data between kernel space and user
space
This section does not describe any driver file operation but instead, introduces some kernel
facilities that one may use to write these driver methods. The driver's write() method
consists of reading data from user space to kernel space, and then processing that data from
the kernel. Such processing could be something like pushing the data to the device, for
example. On the other hand, the driver's read() method consists of copying data from the
kernel to the user space. Both of these methods introduces new elements we need to discuss
prior to jumping to their respective steps. The first one is __user. __user is a cookie used
by sparse (a semantic checker used by the kernel to find possible coding faults) to let the
developer know he is actually about to use an untrusted pointer (or a pointer that may be
invalid in the current virtual address mapping) improperly and that he should not
dereference but instead, use dedicated kernel functions to access the memory to which this
pointer points.

Character Device Drivers

[99]

This allows us to introduce different kernel functions needed to access such memory, either
to read or write. These are copy_from_user() and copy_from_user() respectively to
copy a buffer from user space to kernel space, and vice versa, to copy a buffer from kernel
to user space:

unsigned long copy_from_user(void *to, const void __user *from,

 unsigned long n)

unsigned long copy_to_user(void __user *to, const void *from,

 unsigned long n)

In both cases, pointers prefixed with __user point to user space (untrusted) memory. n
represents the number of bytes to copy. from represents the source address, and to is the
destination address. Each of these returns the number of bytes that could not be copied. On
success, the return value should be 0.

Please do note that with copy_to_user(), if some data could not be copied, the function
will pad the copied data to the requested size using zero bytes.

A single value copy
When it comes to copying single and simple variables like char and int but not larger data
types like structures nor arrays, the kernel offers dedicated macros in order to quickly
perform the desired operation. These macros are put_user(x, ptr) and get_used(x,
ptr), which are explained as follows:

put_user(x, ptr);: This macro copies a variable from kernel space to user
space. x represents value to copy to user space, and ptr is the destination address
in user space. The macro returns 0 on success, or -EFAULT on error. x must be
assignable to the result of dereferencing ptr. In other words, they must have (or
point to) the same type.
get_user(x, ptr);: This macro copies a variable from user space to kernel
space, and returns 0 on success or -EFAULT on error. Please do note that x is set
to 0 on error. x represents the kernel variable to store the result, and ptr is the
source address in user space. The result of dereferencing ptr must be assignable
to x without a cast. Guess what it means.

Character Device Drivers

[100]

The open method
open is the method called every time someone opens your device's file. Device opening will
always success in case where this method is not defined. One usually uses this method to
perform device and data structure initialization, and return a negative error code if
something goes wrong, or 0.The prototype of open method is defined as follows:

int (*open)(struct inode *inode, struct file *filp);

Per-device data
For each open performed on your character device, the callback function will be given a
struct inode as parameter, which is the kernel lower-level representation of the file. That
struct inode structure has a field named i_cdev that points to the cdev we have
allocated in the init function. By embedding the struct cdev in our device-specific data
as in struct pcf2127 in the following example, we will be able to get a pointer on that
specific data using the container_of macro. Here is an open method sample.

The following is our data structure:

struct pcf2127 {

 struct cdev cdev;

 unsigned char *sram_data;

 struct i2c_client *client;

 int sram_size;

 [...]

};

Given this data structure, the open method would look like this:

static unsigned int sram_major = 0;

static struct class *sram_class = NULL;

static int sram_open(struct inode *inode, struct file *filp)

{

 unsigned int maj = imajor(inode);

 unsigned int min = iminor(inode);

 struct pcf2127 *pcf = NULL;

 pcf = container_of(inode->i_cdev, struct pcf2127, cdev);

 pcf->sram_size = SRAM_SIZE;

 if (maj != sram_major || min < 0){

 pr_err ("device not found\n");

 return -ENODEV; /* No such device */

Character Device Drivers

[101]

 }

 /* prepare the buffer if the device is opened for the first time */

 if (pcf->sram_data == NULL) {

 pcf->sram_data = kzalloc(pcf->sram_size, GFP_KERNEL);

 if (pcf->sram_data == NULL) {

 pr_err("Open: memory allocation failed\n");

 return -ENOMEM;

 }

 }

 filp->private_data = pcf;

 return 0;

}

The release method
The release method is called when the device gets closed, the reverse of the open method.
You must then undo everything you have done in the open task. What you have to do is
roughly:

Free any private memory allocated during the open() step.1.
Shut down the device (if supported) and discard every buffer on the last closing2.
(if the device supports multi opening, or if the driver can handle more than one
device at a time).

The following is an excerpt of a release function:

static int sram_release(struct inode *inode, struct file *filp)

{

 struct pcf2127 *pcf = NULL;

 pcf = container_of(inode->i_cdev, struct pcf2127, cdev);

 mutex_lock(&device_list_lock);

 filp->private_data = NULL;

 /* last close? */

 pcf2127->users--;

 if (!pcf2127->users) {

 kfree(tx_buffer);

 kfree(rx_buffer);

 tx_buffer = NULL;

 rx_buffer = NULL;

 [...]

Character Device Drivers

[102]

 if (any_global_struct)

 kfree(any_global_struct);

 }

 mutex_unlock(&device_list_lock);

 return 0;

}

The write method
The write() method is used to send data to the device; whenever a user app calls the
write function on the device's file, the kernel implementation is called. Its prototype is as
follows:

ssize_t(*write)(struct file *filp, const char __user *buf, size_t count,

loff_t *pos);

The return value is the number of bytes (size) written
*buf represents the data buffer coming from the user space
count is the size of the requested transfer
*pos indicates the start position from which data should be written in the file

Steps to write
The following steps do not describe any standard nor universal method to implement the
driver's write() method. They are just an overview of what kind of operations one can
perform in this method.

Check for bad or invalid requests coming from the user space. This step is1.
relevant only if the device exposes its memory (eeprom, I/O memory, and so on),
which may have size limitations:

/* if trying to Write beyond the end of the file, return error.

 * "filesize" here corresponds to the size of the device memory (if

any)

 */

if (*pos >= filesize) return -EINVAL;

Character Device Drivers

[103]

Adjust count for the remaining bytes in order to not go beyond the file size. This2.
step is not mandatory neither, and is relevant in the same condition as step 1:

/* filesize coerresponds to the size of device memory */

if (*pos + count > filesize)

 count = filesize - *pos;

Find the location from which you will start to write. This step is relevant only if3.
the device has a memory in which the write() method is supposed to write
given data. As steps 2 and 3, this step is not mandatory:

/* convert pos into valid address */

void *from = pos_to_address(*pos);

Copy data from the user space and write it into the appropriate kernel space:4.

if (copy_from_user(dev->buffer, buf, count) != 0){

 retval = -EFAULT;

 goto out;

}

/* now move data from dev->buffer to physical device */

Write to the physical device and return an error on failure:5.

write_error = device_write(dev->buffer, count);

if (write_error)

 return -EFAULT;

Increase the current position of the cursor in the file, according to the number of6.
bytes written. Finally, return the number of bytes copied:

*pos += count;

Return count;

The following is an example of the write method. Once again, this is aimed to give an
overview:

ssize_t

eeprom_write(struct file *filp, const char __user *buf, size_t count,

 loff_t *f_pos)

{

 struct eeprom_dev *eep = filp->private_data;

 ssize_t retval = 0;

 /* step (1) */

 if (*f_pos >= eep->part_size)

 /* Writing beyond the end of a partition is not allowed. */

Character Device Drivers

[104]

 return -EINVAL;

 /* step (2) */

 if (*pos + count > eep->part_size)

 count = eep->part_size - *pos;

 /* step (3) */

 int part_origin = PART_SIZE * eep->part_index;

 int register_address = part_origin + *pos;

 /* step(4) */

 /* Copy data from user space to kernel space */

 if (copy_from_user(eep->data, buf, count) != 0)

 return -EFAULT;

 /* step (5) */

 /* perform the write to the device */

 if (write_to_device(register_address, buff, count) < 0){

 pr_err("ee24lc512: i2c_transfer failed\n");

 return -EFAULT;

 }

 /* step (6) */

 *f_pos += count;

 return count;

}

The read method
The prototype of the read() method is given as follows:

ssize_t (*read) (struct file *filp, char __user *buf, size_t count, loff_t

*pos);

The return value is the size read. The rest of the method's elements are described here:

*buf is the buffer we receive from the user space
count is the size of the requested transfer (size of the user buffer)
*pos indicates the start position from which data should be read in the file

Character Device Drivers

[105]

Steps to read
Prevent from reading beyond the file size, and return end-of-file:1.

if (*pos >= filesize)

 return 0; /* 0 means EOF */

The number of bytes read can't go beyond the file size. Adjust count2.
appropriately:

if (*pos + count > filesize)

 count = filesize - (*pos);

Find the location from which you will start the read:3.

void *from = pos_to_address (*pos); /* convert pos into valid

address */

Copy the data into the user-space buffer and return an error on failure:4.

sent = copy_to_user(buf, from, count);

if (sent)

 return -EFAULT;

Advance the file's current position according to the number of bytes read, and5.
return the number of bytes copied:

*pos += count;

Return count;

The following is an example of a driver read() file operation, which is intended to give an
overview of what can be done there:

ssize_t eep_read(struct file *filp, char __user *buf, size_t count, loff_t

*f_pos)

{

 struct eeprom_dev *eep = filp->private_data;

 if (*f_pos >= EEP_SIZE) /* EOF */

 return 0;

 if (*f_pos + count > EEP_SIZE)

 count = EEP_SIZE - *f_pos;

 /* Find location of next data bytes */

 int part_origin = PART_SIZE * eep->part_index;

 int eep_reg_addr_start = part_origin + *pos;

Character Device Drivers

[106]

 /* perform the read from the device */

 if (read_from_device(eep_reg_addr_start, buff, count) < 0){

 pr_err("ee24lc512: i2c_transfer failed\n");

 return -EFAULT;

 }

 /* copy from kernel to user space */

 if(copy_to_user(buf, dev->data, count) != 0)

 return -EIO;

 *f_pos += count;

 return count;

}

The llseek method
The llseek function is called when one moves the cursor position within a file. The entry
point of this method in user space is lseek(). One can refer to the man-page in order to
print the full description of either method from user space: man llseek and man lseek.
Its prototype looks as follows:

loff_t(*llseek) (structfile *filp, loff_t offset, int whence);

The return value is the new position in the file
loff_t is an offset, relative to the current file position, which defines how much
it will be changed
whence defines where to seek from. Possible values are:

SEEK_SET: This puts the cursor into a position relative to the
beginning of the file
SEEK_CUR: This puts the cursor into a position relative to the
current file position
SEEK_END: This adjusts the cursor to a position relative to end-of-
file

Character Device Drivers

[107]

Steps to llseek
Use the switch statement to check every possible whence case, since they are1.
limited, and adjust newpos accordingly:

switch(whence){

 case SEEK_SET:/* relative from the beginning of file */

 newpos = offset; /* offset become the new position */

 break;

 case SEEK_CUR: /* relative to current file position */

 newpos = file->f_pos + offset; /* just add offset to the

current position */

 break;

 case SEEK_END: /* relative to end of file */

 newpos = filesize + offset;

 break;

 default:

 return -EINVAL;

}

Check whether newpos is valid:2.

if (newpos < 0)

 return -EINVAL;

Update f_pos with the new position:3.

filp->f_pos = newpos;

Return the new file-pointer position:4.

return newpos;

The following is an example of a user program that successively reads and seeks into a file.
The underlying driver will then execute the llseek() file operation entry:

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <stdio.h>

#define CHAR_DEVICE "toto.txt"

int main(int argc, char **argv)

{

 int fd= 0;

 char buf[20];

Character Device Drivers

[108]

 if ((fd = open(CHAR_DEVICE, O_RDONLY)) < -1)

 return 1;

 /* Read 20 bytes */

 if (read(fd, buf, 20) != 20)

 return 1;

 printf("%s\n", buf);

 /* Move the cursor to 10 time, relative to its actual position */

 if (lseek(fd, 10, SEEK_CUR) < 0)

 return 1;

 if (read(fd, buf, 20) != 20)

 return 1;

 printf("%s\n",buf);

 /* Move the cursor ten time, relative from the beginig of the file */

 if (lseek(fd, 7, SEEK_SET) < 0)

 return 1;

 if (read(fd, buf, 20) != 20)

 return 1;

 printf("%s\n",buf);

 close(fd);

 return 0;

}

The code produces the following output:

jma@jma:~/work/tutos/sources$ cat toto.txt
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.
jma@jma:~/work/tutos/sources$./seek
Lorem ipsum dolor si
nsectetur adipiscing
psum dolor sit amet,
jma@jma:~/work/tutos/sources$

The poll method
If one needs to implement a passive wait (not wasting CPU cycles while sensing the
character device), one must implement the poll() function, which will be called whenever
a user-space program performs a select() or poll() system calls on the file associated
with the device:

unsigned int (*poll) (struct file *, struct poll_table_struct *);

Character Device Drivers

[109]

The kernel function at the heart of this method is poll_wait(), defined in
<linux/poll.h>, which is the header one should include in driver code:

void poll_wait(struct file * filp, wait_queue_head_t * wait_address,

poll_table *p)

poll_wait() adds the device associated with a struct file structure (given as first
parameter) to a list of those that can wake up processes (which have been put to sleep in the
struct wait_queue_head_t structure given as second parameter), according to events
registered into the struct poll_table structure given as third parameter. A user process
can run poll(), select(), or epoll() system calls to add a set of files to a list on which it
needs to wait, in order to be aware of the associated (if any) devices readiness. The kernel
will then call the poll entry of the driver associated with each device file. The poll method
of each driver should then call poll_wait() in order to register events for which the
process needs to be notified with the kernel, put that process to sleep until one of these
events occurs, and register the driver as one of those that can wake the process up. The
usual way is to use a wait queue per event type (one for readability, another one for
writability, and eventually one for exception if needed), according to events supported by
the select() (or poll()) system call.

The return value of the (*poll) file operation must have POLLIN | POLLRDNORM set if
there is data to read (at the moment, select or poll is called), POLLOUT | POLLWRNORM if the
device is writable (at the moment, select or poll is called here as well), and 0 if there is no
new data and the device is not yet writable. In the following example, we assume the device
supports both blocking read and write. Of course one may implement only one of these. If
the driver does not define this method, the device will be considered as always readable
and writable, so that poll() or select() system calls return immediately.

Steps to poll
When one implements the poll function, either the read or write method may change:

Declare a wait queue for each event type (read, write, exception) one needs to1.
implement passive wait, to put tasks in when there is no data to read, or when
the device is not writable yet:

static DECLARE_WAIT_QUEUE_HEAD(my_wq);

static DECLARE_WAIT_QUEUE_HEAD(my_rq);

Character Device Drivers

[110]

Implement the poll function like this:2.

#include <linux/poll.h>

static unsigned int eep_poll(struct file *file, poll_table *wait)

{

 unsigned int reval_mask = 0;

 poll_wait(file, &my_wq, wait);

 poll_wait(file, &my_rq, wait);

 if (new-data-is-ready)

 reval_mask |= (POLLIN | POLLRDNORM);

 if (ready_to_be_written)

 reval_mask |= (POLLOUT | POLLWRNORM);

 return reval_mask;

}

Notify the wait queue when there is new data or when the device is writable:3.

wake_up_interruptible(&my_rq); /* Ready to read */

wake_up_interruptible(&my_wq); /* Ready to be written to */

One can notify readable events either from within the driver's write() method, meaning
that the written data can be read back, or from within an IRQ handler, meaning that an
external device sent some data which can be read back. On the other hand, one can notify
writable events either from within the driver's read() method, meaning that the buffer is
empty and can be filled again, or from within an IRQ handler, meaning that the device has
completed a data-send operation, and is ready to accept data again.

When using a sleepy input/output operation (blocked I/O), either the read or write
method may change. The wait queue used in the poll must be used in read too. When the
user needs to read, if there is data, that data will be sent immediately to the process and you
must update the wait queue condition (set to false); if there is no data, the process is put to
sleep in the wait queue.

If the write method is supposed to feed data, then in the write callback, you must fill the
data buffer and update the wait queue condition (set to true), and wake up the reader (see
the section wait queue). If it is an IRQ instead, these operations must be performed in their
handler.

Character Device Drivers

[111]

The following is an excerpt of a code that select() on a given char device in order to sense
data availability:

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/select.h>

#define NUMBER_OF_BYTE 100

#define CHAR_DEVICE "/dev/packt_char"

char data[NUMBER_OF_BYTE];

int main(int argc, char **argv)

{

 int fd, retval;

 ssize_t read_count;

 fd_set readfds;

 fd = open(CHAR_DEVICE, O_RDONLY);

 if(fd < 0)

 /* Print a message and exit*/

 [...]

 while(1){

 FD_ZERO(&readfds);

 FD_SET(fd, &readfds);

 /*

 * One needs to be notified of "read" events only, without timeout.

 * This call will put the process to sleep until it is notified the

 * event for which it registered itself

 */

 ret = select(fd + 1, &readfds, NULL, NULL, NULL);

 /* From this line, the process has been notified already */

 if (ret == -1) {

 fprintf(stderr, "select call on %s: an error ocurred",

CHAR_DEVICE);

 break;

 }

 /*

 * file descriptor is now ready.

 * This step assume we are interested in one file only.

 */

 if (FD_ISSET(fd, &readfds)) {

 read_count = read(fd, data, NUMBER_OF_BYTE);

Character Device Drivers

[112]

 if (read_count < 0)

 /* An error occured. Handle this */

 [...]

 if (read_count != NUMBER_OF_BYTE)

 /* We have read less than need bytes */

 [...] /* handle this */

 else

 /* Now we can process data we have read */

 [...]

 }

 }

 close(fd);

 return EXIT_SUCCESS;

}

The ioctl method
A typical Linux system contains around 350 system calls (syscalls), but only a few of them
are linked with file operations. Sometimes devices may need to implement specific
commands that are not provided by system calls, and especially the ones associated with
files and thus device files. In this case, the solution is to use input/output control(ioctl),
which is a method by which one extends a list of syscalls (actually commands) associated
with a device.. One can use it to send special commands to devices (reset, shutdown,
configure, and so on). If the driver does not define this method, the kernel will return -
ENOTTY error to any ioctl() system call.

In order to be valid and safe, an ioctl command needs to be identified by a number which
should be unique to the system. The unicity of ioctl numbers across the system will prevent
it from sending the right command to the wrong device, or passing the wrong argument to
the right command (given a duplicated ioctl number). Linux provides four helper macros to
create an ioctl identifier, depending on whether there is data transfer or not and on the
direction of the transfer. Their respective prototypes are:

_IO(MAGIC, SEQ_NO)

_IOW(MAGIC, SEQ_NO, TYPE)

_IOR(MAGIC, SEQ_NO, TYPE)

_IORW(MAGIC, SEQ_NO, TYPE)

Character Device Drivers

[113]

Their descriptions are as follows:

_IO: The ioctl does not need data transfer
_IOW: The ioctl needs write parameters (copy_from_user or get_user)
_IOR: The ioctl needs read parameters (copy_to_user or put_user)
_IOWR: The ioctl needs both write and read parameters

What their parameters mean (in the order they are passed) is described here:

A number coded on 8 bits (0 to 255), called magic number.1.
A sequence number or command ID, also on 8 bits.2.
A data type, if any, that will inform the kernel about the size to be copied.3.

It is well documented in Documentation/ioctl/ioctl-decoding.txt in the kernel source, and
existing ioctl are listed in Documentation/ioctl/ioctl-number.txt, a good place to start when
you need to create an ioctl command.

Generating ioctl numbers (command)
One should generate their own ioctl number in a dedicated header file. It is not mandatory,
but it is recommended, since this header should be available in user space too. In other
words, one should duplicate the ioctl header file so that there is one in the kernel and one in
the user space, which one can include in user apps. Let's now generate ioctl numbers in a
real example:

eep_ioctl.h:

#ifndef PACKT_IOCTL_H

#define PACKT_IOCTL_H

/*

 * We need to choose a magic number for our driver, and sequential numbers

 * for each command:

 */

#define EEP_MAGIC 'E'

#define ERASE_SEQ_NO 0x01

#define RENAME_SEQ_NO 0x02

#define ClEAR_BYTE_SEQ_NO 0x03

#define GET_SIZE 0x04

/*

 * Partition name must be 32 byte max

 */

#define MAX_PART_NAME 32

Character Device Drivers

[114]

/*

 * Now let's define our ioctl numbers:

 */

#define EEP_ERASE _IO(EEP_MAGIC, ERASE_SEQ_NO)

#define EEP_RENAME_PART _IOW(EEP_MAGIC, RENAME_SEQ_NO, unsigned long)

#define EEP_GET_SIZE _IOR(EEP_MAGIC, GET_SIZE, int *)

#endif

Steps for ioctl
First, let us have a look at its prototype. It look likes as follows:

long ioctl(struct file *f, unsigned int cmd, unsigned long arg);

There is only one step: use a switch ... case statement and return an -ENOTTY error
when an undefined ioctl command is called. One can find more information at
http://man7.org/linux/man-pages/man2/ioctl.2.html:

/*

 * User space code also need to include the header file in which ioctls

 * defined are defined. This is eep_ioctl.h in our case.

 */

#include "eep_ioctl.h"

static long eep_ioctl(struct file *f, unsigned int cmd, unsigned long arg)

{

 int part;

 char *buf = NULL;

 int size = 1300;

 switch(cmd){

 case EEP_ERASE:

 erase_eepreom();

 break;

 case EEP_RENAME_PART:

 buf = kmalloc(MAX_PART_NAME, GFP_KERNEL);

 copy_from_user(buf, (char *)arg, MAX_PART_NAME);

 rename_part(buf);

 break;

 case EEP_GET_SIZE:

 copy_to_user((int*)arg, &size, sizeof(int));

 break;

 default:

 return -ENOTTY;

 }

 return 0;

}

http://man7.org/linux/man-pages/man2/ioctl.2.html

Character Device Drivers

[115]

If you think your ioctl command will need more than one argument,
you should gather those arguments in a structure and just pass a pointer
from the structure to ioctl.

Now, from the user space, you must use the same ioctl header as in the driver's code:

my_main.c

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include "eep_ioctl.h" /* our ioctl header file */

int main()

{

 int size = 0;

 int fd;

 char *new_name = "lorem_ipsum"; /* must not be longer than

MAX_PART_NAME */

 fd = open("/dev/eep-mem1", O_RDWR);

 if (fd == -1){

 printf("Error while opening the eeprom\n");

 return -1;

 }

 ioctl(fd, EEP_ERASE); /* ioctl call to erase partition */

 ioctl(fd, EEP_GET_SIZE, &size); /* ioctl call to get partition size */

 ioctl(fd, EEP_RENAME_PART, new_name); /* ioctl call to rename

partition */

 close(fd);

 return 0;

}

Character Device Drivers

[116]

Filling the file_operations structure
When writing kernel modules, it is better to use designated initializers when it comes to
statically initialize structures with their parameters. It consists of naming the member one
needs to assign a value to. The form is .member-name to designate what member should be
initialized. This allows, among other things, initializing the members in an undefined order,
or leaving unchanged the fields that we do not want to modify.

Once we have defined our functions, we just have to fill the structure as follows:

static const struct file_operations eep_fops = {

 .owner = THIS_MODULE,

 .read = eep_read,

 .write = eep_write,

 .open = eep_open,

 .release = eep_release,

 .llseek = eep_llseek,

 .poll = eep_poll,

 .unlocked_ioctl = eep_ioctl,

};

Let us remember, the structure is given as a parameter to cdev_init in the init method.

Summary
In this chapter, we have demystified character devices and we have seen how to let users
interact with our driver through device files. We learned how to expose file operations to
the user space and control their behavior from within the kernel. We went so far that you
are even able to implement multi-device support. The next chapter is a bit hardware
oriented since it deals with platform drivers which expose hardware device capabilities to
the user space. The power of character drivers combined with platform drivers is just
amazing. See you in the next chapter.

5
Platform Device Drivers

We all know about plug and play devices. They are handled by the kernel as soon as they
are plugged in. These may be USB or PCI express, or any other auto-discovered devices.
Therefore, other device types also exist, which are not hot-pluggable, and which the kernel
needs to know about prior to being managed. There are I2C, UART, SPI, and other devices
not wired to enumeration-capable buses.

There are real physical buses you may already know: USB, I2S, I2C, UART, SPI, PCI, SATA,
and so on. Such buses are hardware devices named controllers. Since they are a part of SoC,
they can't be removed, are non-discoverable, and are also called platform devices.

People often say platform devices are on-chip devices (embedded in the
SoC). In practice, it is partially true, since they are hard-wired into the chip
and can't be removed. But devices connected to I2C or SPI are not on-chip,
and are platform devices too, because they are not discoverable. Similarly,
there may be on-chip PCI or USB devices, but they are not platform
devices, because they are discoverable.

From an SoC point of view, those devices (buses) are connected internally through
dedicated buses, and are most of the time proprietary and specific to the manufacturer.
From the kernel point of view, these are root devices, and connected to nothing. That is
where the pseudo platform bus comes in. The pseudo platform bus, also called platform bus is
a kernel virtual bus for devices that do not seat on a physical bus known to the kernel. In
this chapter, platform devices refer to devices that rely on the pseudo platform bus.

Dealing with platform devices essentially requires two steps:

Register a platform driver (with a unique name) that will manage your devices
Register your platform device with the same name as the driver, and their
resources, in order to let the kernel know that your device is there

Platform Device Drivers

[118]

That being said, in this chapter, we will discuss the following:

Platform devices along with their driver
Devices and driver-matching mechanisms in the kernel
Registering platform drivers with devices, as well as platform data

Platform drivers
Before going further, please pay attention to the following warning. Not all platform
devices are handled by platform drivers (or should I say pseudo platform drivers). Platform
drivers are dedicated to devices not based on conventional buses. I2C devices or SPI devices
are platform devices, but respectively rely on I2C or SPI buses, not on the platform bus.
Everything needs to be done manually with the platform driver. The platform driver must
implement a probe function, called by the kernel when the module is inserted or when a
device claims it. When developing platform drivers, the main structure one has to fill is
struct platform_driver, and registering your driver with the platform bus core with
dedicated functions shown as follows:

static struct platform_driver mypdrv = {

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = "my_platform_driver",

 .owner = THIS_MODULE,

 },

};

Let us see what the meaning is of each element that composes the structure, and what they
are used for:

probe(): This is the function that gets called when a device claims your driver
after a match occurs. Later, we will see how probe is called by the core. Its
declaration is as follows:

static int my_pdrv_probe(struct platform_device *pdev)

remove(): This is called to get rid of the driver when it is not needed anymore by
devices, and its declaration looks like this:

static int my_pdrv_remove(struct platform_device *pdev)

Platform Device Drivers

[119]

struct device_driver: This describes the driver itself, providing a name,
owner, and some field, which we will see later.

Registering a platform driver with the kernel is as simple as calling
platform_driver_register() or platform_driver_probe() in the init function
(when the module is loaded). The difference between those functions is that:

platform_driver_register() registers and puts the driver into a list of
drivers maintained by the kernel, so that its probe() function can be called on
demand whenever a new match occurs. To prevent your driver from being
inserted and registered in that list, just use the next function.
With platform_driver_probe(), the kernel immediately runs the match loop,
checks if there is a platform device with the matching name, and then calls the
driver's probe() if a match occurred, meaning that the device is present. If not,
the driver is ignored. This method prevents the deferred probe, since it does not
register the driver on the system. Here, the probe function is placed in an
__init section, which is freed when the kernel boot has completed, thus
preventing the deferred probe and reducing the driver's memory footprint. Use
this method if you are 100% sure the device is present in the system:

ret = platform_driver_probe(&mypdrv, my_pdrv_probe);

The following is a simple platform driver that registers itself with the kernel:

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/platform_device.h>

static int my_pdrv_probe (struct platform_device *pdev){

 pr_info("Hello! device probed!\n");

 return 0;

}

static void my_pdrv_remove(struct platform_device *pdev){

 pr_info("good bye reader!\n");

}

static struct platform_driver mypdrv = {

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = KBUILD_MODNAME,

 .owner = THIS_MODULE,

 },

Platform Device Drivers

[120]

};

static int __init my_drv_init(void)

{

 pr_info("Hello Guy\n");

 /* Registering with Kernel */

 platform_driver_register(&mypdrv);

 return 0;

}

static void __exit my_pdrv_remove (void)

{

 Pr_info("Good bye Guy\n");

 /* Unregistering from Kernel */

 platform_driver_unregister(&my_driver);

}

module_init(my_drv_init);

module_exit(my_pdrv_remove);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu");

MODULE_DESCRIPTION("My platform Hello World module");

Our module does nothing else in the init/exit function but register/unregister with the
platform bus core. This is the case with most drivers. In this case, we can get rid of
module_init and module_exit, and use the module_platform_driver macro.

The module_platform_driver macro looks like as follows:

/*

 * module_platform_driver() - Helper macro for drivers that don't

 * do anything special in module init/exit. This eliminates a lot

 * of boilerplate. Each module may only use this macro once, and

 * calling it replaces module_init() and module_exit()

 */

#define module_platform_driver(__platform_driver) \

module_driver(__platform_driver, platform_driver_register, \

platform_driver_unregister)

Platform Device Drivers

[121]

This macro will be responsible for registering our module with the platform driver core. No
need for module_init and module_exit macros, nor init and exit function anymore. It
does not mean that those functions are not called anymore, just that we can forgot writing
them by ourselves.

The probe function is not a substitute to init function. The probe
function is called every time when a given device matches with the driver,
whereas the init function runs only once, when the module gets loaded.

[...]

static int my_driver_probe (struct platform_device *pdev){

 [...]

}

static void my_driver_remove(struct platform_device *pdev){

 [...]

}

static struct platform_drivermy_driver = {

 [...]

};

module_platform_driver(my_driver);

There are specific macros for each bus that one needs to register the driver with. The
following list is not exhaustive:

module_platform_driver(struct platform_driver) for platform drivers,
dedicated to devices that do not sit on conventional physical buses (we just used
it above)
module_spi_driver(struct spi_driver) for SPI drivers
module_i2c_driver(struct i2c_driver) for I2C drivers
module_pci_driver(struct pci_driver) for PCI drivers
module_usb_driver(struct usb_driver) for USB drivers
module_mdio_driver(struct mdio_driver) for mdio
[...]

If you don't know which bus your driver needs to sit on, then it is a
platform driver, and you should use platform_driver_register or
platform_driver_probe to register the driver.

Platform Device Drivers

[122]

Platform devices
Actually, we should have said pseudo platform device, since this section concerns devices
that sit on pseudo platform buses. When you are done with the driver, you will have to feed
the kernel with devices needing that driver. A platform device is represented in the kernel
as an instance of struct platform_device, and looks as follows:

struct platform_device {

 const char *name;

 u32 id;

 struct device dev;

 u32 num_resources;

 struct resource *resource;

};

When it comes to the platform driver, before driver and device match, the name field of
both struct platform_device and static struct platform_driver.driver.name
must be the same. The num_resources and struct resource *resource field will be
covered in the next section. Just remember that, since resource is an array,
num_resources must contain the size of that array.

Resources and platform data
At the opposite end to hot-pluggable devices, the kernel has no idea of what devices are
present on your system, what they are capable of, or what they need in order to work
properly. There is no auto-negotiation process, so any information provided to the kernel
would be welcome. There are two methods to inform the kernel about the resources (irq,
dma, memory region, I/O ports, buses) and data (any custom and private data structure you
may want to pass to the driver) that the device needs which are discussed as follows:

Device provisioning - the old and depreciated way
This method is to be used with the kernel version that does not support device tree. With
this method, drivers remain generic, and devices are registered in board-related source files.

Platform Device Drivers

[123]

Resources

Resources represent all the elements that characterize the device from the hardware point of
view, and which the device needs, in order to be set up and work properly. There are only
six types of resources in the kernel, all listed in include/linux/ioport.h, and used as
flags to describe the resource's type:

#define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */

#define IORESOURCE_MEM 0x00000200 /* Memory regions */

#define IORESOURCE_REG 0x00000300 /* Register offsets */

#define IORESOURCE_IRQ 0x00000400 /* IRQ line */

#define IORESOURCE_DMA 0x00000800 /* DMA channels */

#define IORESOURCE_BUS 0x00001000 /* Bus */

A resource is represented in the kernel as an instance of struct resource:

struct resource {

 resource_size_t start;

 resource_size_t end;

 const char *name;

 unsigned long flags;

 };

Let us explain the meaning of each element in the structure:

start/end: This represents where the resource begins/ends. For I/O or memory
regions, it represents where they begin/end. For IRQ lines, buses or DMA
channels, start/end must have the same value.
flags: This is a mask that characterizes the type of resource, for example
IORESOURCE_BUS.
name: This identifies or describes the resource.

Once one has provided the resources, one needs to extract them back in the driver in order
to work with them. The probe function is a good place to extract them. Before one goes
further, let's remember the declaration of the probe function for a platform device driver:

int probe(struct platform_device *pdev);

pdev is automatically filled by the kernel, with the data and resource we registered earlier.
Let's see how to pick them.

Platform Device Drivers

[124]

The struct resource embedded in struct platform_device can be retrieved with the
platform_get_resource() function. The following is the prototype of
platform_get_resource:

struct resource *platform_get_resource(structplatform_device *dev,

 unsigned int type, unsigned int num);

The first parameter is an instance of the platform device itself. The second parameter tells
what kind of resource we need. For memory, it should be IORESOURCE_MEM. Again, please
have a look at include/linux/ioport.h for more details. num parameter is an index that
says which resource type is desired. Zero indicates the first one, and so on.

If the resource is an IRQ, we must use int platform_get_irq(struct
platform_device * pdev, unsigned intnum), where pdev is the platform device, and
num is the IRQ index within the resource (in case there is more than one). The whole probe
function which we can use to extract the platform data which we registered for our device
can look as follows:

static int my_driver_probe(struct platform_device *pdev)

{

struct my_gpios *my_gpio_pdata =

 (struct my_gpios*)dev_get_platdata(&pdev->dev);

 int rgpio = my_gpio_pdata->reset_gpio;

 int lgpio = my_gpio_pdata->led_gpio;

 struct resource *res1, *res2;

 void *reg1, *reg2;

 int irqnum;

 res1 = platform_get_resource(pdev, IORESSOURCE_MEM, 0);

 if((!res1)){

 pr_err(" First Resource not available");

 return -1;

 }

 res2 = platform_get_resource(pdev, IORESSOURCE_MEM, 1);

 if((!res2)){

 pr_err(" Second Resource not available");

 return -1;

 }

 /* extract the irq */

 irqnum = platform_get_irq(pdev, 0);

 Pr_info("\n IRQ number of Device: %d\n", irqnum);

 /*

Platform Device Drivers

[125]

 * At this step, we can use gpio_request, on gpio,

 * request_irq on irqnum and ioremap() on reg1 and reg2.

 * ioremap() is discussed in chapter 11, Kernel Memory Management

 */

 [...]

 return 0;

}

Platform data

Any other data whose type is not a part of the resource types enumerated in the preceding
section fall here (for example, GPIO). Whatever their type is, the struct
platform_device contains a struct device field, which in turn contains a struct
platform_data field. Usually, one should embed that data in a structure and pass it to the
platform_device.device.platform_data field. Let's say, for example, that you declare
a platform device that needs two gpios number as platform data, one irq number, and two
memory regions as resource. The following example shows how to register platform data
along with the device. Here, we use platform_device_register(struct
platform_device *pdev) function, which one uses to register a platform device with the
platform core:

/*

 * Other data than irq or memory must be embedded in a structure

 * and passed to "platform_device.device.platform_data"

 */

struct my_gpios {

 int reset_gpio;

 int led_gpio;

};

/*our platform data*/

static struct my_gpiosneeded_gpios = {

 .reset_gpio = 47,

 .led_gpio = 41,

};

/* Our resource array */

static struct resource needed_resources[] = {

 [0] = { /* The first memory region */

 .start = JZ4740_UDC_BASE_ADDR,

 .end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1,

 .flags = IORESOURCE_MEM,

 .name = "mem1",

 },

 [1] = {

 .start = JZ4740_UDC_BASE_ADDR2,

Platform Device Drivers

[126]

 .end = JZ4740_UDC_BASE_ADDR2 + 0x10000 -1,

 .flags = IORESOURCE_MEM,

 .name = "mem2",

 },

 [2] = {

 .start = JZ4740_IRQ_UDC,

 .end = JZ4740_IRQ_UDC,

 .flags = IORESOURCE_IRQ,

 .name = "mc",

 },

};

static struct platform_devicemy_device = {

 .name = "my-platform-device",

 .id = 0,

 .dev = {

 .platform_data = &needed_gpios,

 },

 .resource = needed_resources,

 .num_resources = ARRY_SIZE(needed_resources),

};

platform_device_register(&my_device);

In the preceding example, we have used IORESOURCE_IRQ and IORESOURCE_MEM in order
to inform the kernel about what kind of resource we provided. To see all other flag types,
have a look at include/linux/ioport.h in the kernel tree.

In order to retrieve the platform data we registered earlier, we could have just used
pdev->dev.platform_data (remember the struct platform_device structure), but it
is recommended to use the kernel-provided function (which does the same thing,
admittedly):

void *dev_get_platdata(const struct device *dev)

struct my_gpios *picked_gpios = dev_get_platdata(&pdev->dev);

Platform Device Drivers

[127]

Where to declare platform devices?

Devices are registered along with their resources and data. In this old and depreciated
method, they are declared a separate module, or in the board init file in the
arch/<arch>/mach-xxx/yyyy.c, which is arch/arm/mach-imx/mach-imx6q.c in our
case, since we use a UDOO quad based on an i.MX6Q from NXP. The function
platform_device_register() lets you do that:

static struct platform_device my_device = {

 .name = "my_drv_name",

 .id = 0,

 .dev.platform_data = &my_device_pdata,

 .resource = jz4740_udc_resources,

 .num_resources = ARRY_SIZE(jz4740_udc_resources),

};

platform_device_register(&my_device);

The name of the device is very important, and is used by the kernel to match the driver with
the same name.

Device provisioning - the new and recommended way
In the first method, any modification will necessitate rebuilding the whole kernel. If the
kernel had to include any application/board-specific configurations, its size would
incredibly increase. In order to keep things simple, and separate devices declarations (since
they are not really part of the kernel) from the kernel source, a new concept has been
introduced: the device tree. The main goal of DTS is to remove very specific and never-tested
code from kernel. With the device tree, platform data and resources are homogenous. The
device tree is a hardware description file and has a format similar to a tree structure, where
every device is represented with a node, and any data or resource or configuration data is
represented as the node's property. This way, you only need to recompile the device tree
when you make some modifications. The device tree forms the subject of the next chapter,
and we will see how to introduce it to the platform device.

Platform Device Drivers

[128]

Devices, drivers, and bus matching
Before any match can occur, Linux calls the platform_match(struct device *dev,
struct device_driver *drv). Platform devices are matched with their drivers by
means of strings. According to the Linux device model, the bus element is the most
important part. Each bus maintains a list of drivers and devices that are registered with it.
The bus driver is responsible for devices and drivers matching. Any time one connects a
new device or adds a new driver to a bus, that bus starts the matching loop.

Now, suppose that you register a new I2C device using functions provided by the I2C core
(discussed in next chapter). The kernel will trigger the I2C bus matching loop, by calling the
I2C core match function registered with the I2C bus driver, to check if there is already a
registered driver that matches with your device. If there is no match, nothing will happen. If
a match occurs, the kernel will notify (by means of a communication mechanism called
netlink socket) the device manager (udev/mdev), which will load (if not loaded yet) the
driver your device matched with. Once the driver loads, its probe() function will
immediately be executed. Not only does I2C work like that, but every bus has its own
matching mechanism that is roughly the same. A bus matching loop is triggered at each
device or driver registration.

We can sum up what we have said in the preceding section in the following figure:

Platform Device Drivers

[129]

Every registered drivers and devices sit on a bus. This makes a tree. USB buses may be
children of PCI buses, whereas MDIO buses are generally children of other devices, and so
on. Thus, our preceding figure changes as follows:

When you register a driver with the platform_driver_probe() function, the kernel
walks through the table of registered platform devices and looks for a match. If any, it calls
the matched driver's probe function with the platform data.

Platform Device Drivers

[130]

How can platform devices and platform drivers
match?
So far, we have only discussed how to fill different structures of both devices and
drivers.But now we will see how they are registered with the kernel, and how Linux knows
which devices are handled by which driver. The answer is MODULE_DEVICE_TABLE. This
macro lets a driver expose its ID table, which describes which devices it can support. In the
meantime, if the driver can be compiled as a module, the driver.name field should match
the module name. If it does not match, the module won't be automatically loaded, unless
we have used the MODULE_ALIAS macro to add another name for the module. At
compilation time, that information is extracted from all the drivers in order to build a device
table. When the kernel has to find the driver for a device (when a matching needs to be
performed), the device table is walked through by the kernel. If an entry is found matching
the compatible (for device tree), device/vendor id or name (for device ID table or
name) of the added device, then the module providing that match is loaded (running the
module's init function), and the probe function is called. The MODULE_DEVICE_TABLE
macro is defined in linux/module.h:

#define MODULE_DEVICE_TABLE(type, name)

The following is the description of each parameter given to this macro:

type: This can be either i2c, spi, acpi, of, platform, usb, pci or any other bus
which you may find in include/linux/mod_devicetable.h. It depends on
the bus our device sits on, or on the matching mechanism we want to use.
name: This is a pointer on a XXX_device_id array, used for device matching. If
we were talking about I2C devices, the structure would be i2c_device_id. For
SPI device, it should be spi_device_id, and so on. For the device tree Open
Firmware (OF) matching mechanism, we must use of_device_id.

For new non-discoverable platform device drivers, it is recommended not
to use platform data anymore, but to use device tree capabilities instead,
with OF matching mechanism. Please do note that the two methods are
not mutually exclusive, thus one can mix these together.

Let's get deeper into the details for matching mechanisms, except for the OF style match
which we will discuss in Chapter 6, The Concept of Device Tree.

Platform Device Drivers

[131]

Kernel devices and drivers-matching function
The function responsible for platform devices and driver-matching functions in kernel is
defined in /drivers/base/platform.c as follows:

static int platform_match(struct device *dev, struct device_driver *drv)

{

 struct platform_device *pdev = to_platform_device(dev);

 struct platform_driver *pdrv = to_platform_driver(drv);

 /* When driver_override is set, only bind to the matching driver */

 if (pdev->driver_override)

 return !strcmp(pdev->driver_override, drv->name);

 /* Attempt an OF style match first */

 if (of_driver_match_device(dev, drv))

 return 1;

 /* Then try ACPI style match */

 if (acpi_driver_match_device(dev, drv))

 return 1;

 /* Then try to match against the id table */

 if (pdrv->id_table)

 return platform_match_id(pdrv->id_table, pdev) != NULL;

 /* fall-back to driver name match */

 return (strcmp(pdev->name, drv->name) == 0);

}

We can enumerate four matching mechanisms. They are all based on the string compare. If
we have a look at platform_match_id, we'll understand how things work underneath:

static const struct platform_device_id *platform_match_id(

 const struct platform_device_id *id,

 struct platform_device *pdev)

{

 while (id->name[0]) {

 if (strcmp(pdev->name, id->name) == 0) {

 pdev->id_entry = id;

 return id;

 }

 id++;

 }

 return NULL;

}

Platform Device Drivers

[132]

Now let's have a look at the struct device_driver structure we discussed in Chapter 4,
Character Device Drivers:

struct device_driver {

 const char *name;

 [...]

 const struct of_device_id *of_match_table;

 const struct acpi_device_id *acpi_match_table;

};

I intentionally removed fields that we are not interested in. struct device_driver forms
the basis of every device driver. Whether it is an I2C, SPI, TTY, or other device driver, they
all embed a struct device_driver element.

OF style and ACPI match

OF style is explained in Chapter 6, The Concept of Device Tree. The second mechanism is an
ACPI table-based matching. We'll not discuss it at all in this book, but for your information,
it uses struct acpi_device_id.

ID table matching

This match style has been for a long time, and is based on the struct device_id
structure. All device id structures are defined in include/linux/mod_devicetable.h.
To find the right structure name, you need to prefix device_id with the bus name whom
your device driver seats on. Examples are: struct i2c_device_id for I2C, struct
platform_device_id for platform devices (that don't sit on a real physical bus),
spi_device_id for SPI devices, usb_device_id for USB, and so on. The typical structure
of a device_id table for a platform device is as follows:

struct platform_device_id {

 char name[PLATFORM_NAME_SIZE];

 kernel_ulong_t driver_data;

};

Platform Device Drivers

[133]

Anyway, if an ID table is registered, it will be walked through whenever the kernel has run
the match function to find a driver for an unknown or new platform device. If there is a
match, the probe function of the matched driver will be invoked, and given as a parameter
a struct platform_device, which will hold a pointer to the matching ID table entry that
originated the match. The .driver_data element is an unsigned long, which is
sometimes casted into pointer addresses in order to point to anything, just like in the serial-
imx driver. The following is an example with platform_device_id in
drivers/tty/serial/imx.c:

static const struct platform_device_id imx_uart_devtype[] = {

 {

 .name = "imx1-uart",

 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],

 }, {

 .name = "imx21-uart",

 .driver_data = (kernel_ulong_t)

&imx_uart_devdata[IMX21_UART],

 }, {

 .name = "imx6q-uart",

 .driver_data = (kernel_ulong_t)

&imx_uart_devdata[IMX6Q_UART],

 }, {

 /* sentinel */

 }

};

The .name field must be the same as the device's name you give when you register the
device in the board specific file. The function responsible for this match style is
platform_match_id. If you look at its definition in drivers/base/platform.c, you'll
see:

static const struct platform_device_id *platform_match_id(

 const struct platform_device_id *id,

 struct platform_device *pdev)

{

 while (id->name[0]) {

 if (strcmp(pdev->name, id->name) == 0) {

 pdev->id_entry = id;

 return id;

 }

 id++;

 }

 return NULL;

}

Platform Device Drivers

[134]

In the following example, which is an excerpt from drivers/tty/serial/imx.c in kernel
sources, one can see how the platform data is converted back into the original data
structure, just by casting. That is how people sometimes pass any data structure as platform
data:

static void serial_imx_probe_pdata(struct imx_port *sport,

 struct platform_device *pdev)

{

 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);

 sport->port.line = pdev->id;

 sport->devdata = (structimx_uart_data *) pdev->id_entry->driver_data;

 if (!pdata)

 return;

 [...]

}

pdev->id_entry is a struct platform_device_id, which is a pointer to the matching
ID table entry made available by the kernel, and whose driver_data element is casted
back to a pointer on the data structure.

Per device-specific data on ID table matching

In the previous section, we have used platform_device_id.platform_data as a
pointer. Your driver may need to support more than one device type. In this situation, you
will need specific device data for each device type you support. You should then use the
device id as an index to an array that contains every possible device data, and not as a
pointer address anymore. The following are detailed steps in an example:

We define an enumeration, depending on the device type that we need to1.
support in our driver:

enum abx80x_chip {

 AB0801,

 AB0803,

 AB0804,

 AB0805,

 AB1801,

 AB1803,

 AB1804,

 AB1805,

 ABX80X

};

Platform Device Drivers

[135]

We define the specific data-type structure:2.

struct abx80x_cap {

 u16 pn;

boolhas_tc;

};

We fill an array with default values, and depending on the index in device_id,3.
we can pick the right data:

static struct abx80x_cap abx80x_caps[] = {

 [AB0801] = {.pn = 0x0801},

 [AB0803] = {.pn = 0x0803},

 [AB0804] = {.pn = 0x0804, .has_tc = true},

 [AB0805] = {.pn = 0x0805, .has_tc = true},

 [AB1801] = {.pn = 0x1801},

 [AB1803] = {.pn = 0x1803},

 [AB1804] = {.pn = 0x1804, .has_tc = true},

 [AB1805] = {.pn = 0x1805, .has_tc = true},

 [ABX80X] = {.pn = 0}

};

We define our platform_device_id with a specific index:4.

static const struct i2c_device_id abx80x_id[] = {

 { "abx80x", ABX80X },

 { "ab0801", AB0801 },

 { "ab0803", AB0803 },

 { "ab0804", AB0804 },

 { "ab0805", AB0805 },

 { "ab1801", AB1801 },

 { "ab1803", AB1803 },

 { "ab1804", AB1804 },

 { "ab1805", AB1805 },

 { "rv1805", AB1805 },

 { }

};

Here we just have to do the stuff in the probe function:5.

static int rs5c372_probe(struct i2c_client *client,

const struct i2c_device_id *id)

{

 [...]

 /* We pick the index corresponding to our device */

int index = id->driver_data;

Platform Device Drivers

[136]

 /*

 * And then, we can access the per device data

 * since it is stored in abx80x_caps[index]

 */

}

Name matching - platform device name matching

Now-a-days most platform drivers do not provide any table at all; they simply fill the name
of the driver itself in the driver's name field. But the matching works because, if you look at
the platform_match function, you will see that at the end the match falls back to name
matching, comparing the driver's name and the device's name. Some older drivers still use
that matching mechanism. The following is name matching from sound/soc/fsl/imx-
ssi.c:

static struct platform_driver imx_ssi_driver = {

 .probe = imx_ssi_probe,

 .remove = imx_ssi_remove,

 /* As you can see here, only the 'name' field is filled */

 .driver = {

 .name = "imx-ssi",

 },

};

module_platform_driver(imx_ssi_driver);

To add a device that matches this driver, one must call platform_device_register or
platform_add_devices, with the same name imx-ssi, in the board-specific file (usually
in arch/<your_arch>/mach-*/board-*.c). For our quad core i.MX6-based UDOO, it is
arch/arm/mach-imx/mach-imx6q.c.

Summary
The kernel pseudo platform bus has no secrets for you anymore. With bus matching
mechanisms, you are able to understand how, when, and why your driver has been loaded,
as well as which device it was for.We can implement any probe function, based on the
matching mechanism we want. Since the main purpose of a driver is to handle a device, we
are now able to populate devices in the system (the old and depreciated way). To finish in
beauty, the next chapter will exclusively deal with the device tree, which is the new
mechanism used to populate devices, along with their configurations, on the system.

6
The Concept of Device Tree

The Device Tree (DT) is an easy to read hardware description file, with JSON like
formatting style, which is a simple tree structure where devices are represented by nodes
with their properties. Properties can be either empty (just the key, to describe boolean
values), or key-value pairs where the value can contain an arbitrary byte stream. This
chapter is a simple introduction to DT. Every kernel subsystem or framework has its own
DT binding. We will talk about those specific bindings when we deal with concerned topics.
The DT originated from OF, which is a standard endorsed by computer companies, and
whose main purpose is defining interfaces for computer firmware systems. That said, one
can find more on DT specification at http:/​/​www.​devicetree.​org/​. Therefore, this chapter
will cover the basics of DT, such as:

Naming convention, as well as aliases and labeling
Describing data types and their APIs
Managing addressing schemes and accessing the device resources
Implementing OF match style and providing application-specific data

Device tree mechanism
DT is enabled in the kernel by setting the option CONFIG_OF to Y. In order to pull the DT
API from within your driver, you must add the following headers:

#include <linux/of.h>

#include <linux/of_device.h>

DT supports a few data types. Let us have a look at them with a sample node description:

/* This is a comment */

// This is another comment

node_label: nodename@reg{

http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/
http://www.devicetree.org/

The Concept of Device Tree

[138]

 string-property = "a string";

 string-list = "red fish", "blue fish";

 one-int-property = <197>; /* One cell in this property */

 int-list-property = <0xbeef 123 0xabcd4>; /*each number (cell) is a

 *32 bit integer(uint32).

 *There are 3 cells in

 */this property

 mixed-list-property = "a string", <0xadbcd45>, <35>, [0x01 0x23 0x45]

 byte-array-property = [0x01 0x23 0x45 0x67];

 boolean-property;

};

The following are some definitions of data types used in device trees:

Text strings are represented with double quotes. One can use commas to create a
list of the strings.
Cells are 32-bit unsigned integers delimited by angle brackets.
Boolean data is nothing but an empty property. The true or false value depends
on the property being there or not.

Naming convention
Every node must have a name in the form <name>[@<address>], where <name> is a string
that can be up to 31 characters in length, and [@<address>] is optional, depending on
whether the node represents an addressable device or not. <address> should be the
primary address used to access the device. An example of device naming is as follows:

expander@20 {

 compatible = "microchip,mcp23017";

 reg = <20>;

 [...]

};

Or

i2c@021a0000 {

 compatible = "fsl,imx6q-i2c", "fsl,imx21-i2c";

 reg = <0x021a0000 0x4000>;

 [...]

};

On the other hand, the label is optional. Labeling a node is useful only if the node is
intended to be referenced from a property of another node. One can see a label as a pointer
to node, as explained in the next section.

The Concept of Device Tree

[139]

Aliases, labels, and phandle
It is very important to understand how these three elements work. They are frequently used
in the DT. Let us take the following DT to explain how they work:

aliases {

 ethernet0 = &fec;

 gpio0 = &gpio1;

 gpio1 = &gpio2;

 mmc0 = &usdhc1;

 [...]

};

gpio1: gpio@0209c000 {

 compatible = "fsl,imx6q-gpio", "fsl,imx35-gpio";

 [...]

};

node_label: nodename@reg {

 [...];

 gpios = <&gpio1 7 GPIO_ACTIVE_HIGH>;

};

A label is nothing but a way to tag a node, to let the node be identified by a unique name. In
the real world, that name is converted into a unique 32-bit value by the DT compiler. In the
preceding example, gpio1 and node_label are both labels. Labels can then be used to
refer to a node, since a label is unique to a node.

A pointer handle (phandle) is a 32-bit value associated with a node that is used to uniquely
identify that node so that the node can be referenced from a property in another node.
Labels are used to have a pointer to the node. By using <&mylabel>, you point to the node
whose label is mylabel.

The use of & is just like in the C programming language; to obtain the
address of an element.

In the preceding example, &gpio1 is converted to the phandle so that it refers to gpio1
node. The same goes for the following example:

thename@address {

 property = <&mylabel>;

};

mylabel: thename@adresss {

 [...]

}

The Concept of Device Tree

[140]

In order not to walk through the whole tree to look for a node, the concept of aliases has
been introduced. In the DT, the aliases node can be seen like a quick lookup table, an
index of another node. One can use the function find_node_by_alias() to find a node
given its alias. The aliases are not used directly in the DT source, but are instead deferenced
by the Linux kernel.

DT compiler
The DT comes in two forms: the textual form, which represents the sources also known as
DTS, and the binary blob form, which represents the compiled DT, also known as DTB.
Source files have the .dts extension. Actually, there are also .dtsi text files, which
represent SoC level definitions, whereas .dts files represent board level definitions. One
can see .dtsi as header files, that should be included in .dts one, which are source files,
not the reverse, a bit like including header files (.h) in the source file (.c). On the other
hand, binary files use the .dtb extension.

There is actually a third form, which is the runtime representation of the DT in
/proc/device-tree.

As its name says, the tool used to compile the device tree is called the device tree compiler
(dtc). From the root kernel source, one can compile either a standalone specific DT or all
DTs for the specific architecture.

Let us compile all DT (.dts) files for arm SoC's:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make dtbs

For a standalone DT:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make imx6dl-sabrelite.dtb

In the preceding example, the name of the source file is imx6dl-sabrelite.dts.

Given a compiled device tree (.dtb) file, you can do the reverse operation and extract the
source (.dts) file:

dtc -I dtb -O dtsarch/arm/boot/dts imx6dl-sabrelite.dtb

>path/to/my_devicetree.dts

For the purpose of debugging, it could be useful to expose the DT to the
user space. The CONFIG_PROC_DEVICETREE configuration variable will do
that for you. You can then explore and walk through the DT in
/proc/device-tree.

The Concept of Device Tree

[141]

Representing and addressing devices
Each device is given at least one node in the DT. Some properties are common to many
device types, especially devices sitting on a bus known to the kernel (SPI, I2C, platform,
MDIO, and so on). These properties are reg, #address-cells, and #size-cells. The
purpose of these properties is device addressing on the bus they sit on. That said, the main
addressing property is reg, which is a generic property and whose meaning depends on the
bus the device sits on. The # (sharp) that prefixes size-cell and address-cell can be
translated into length.

Each addressable device gets a reg property that is a list of tuples in the form reg =
<address0size0 [address1size1] [address2size2] ... >, where each tuple
represents an address range used by the device. #size-cells indicates how many 32 bit
cells are used to represent size, and may be 0 if size is not relevant. On the other hand,
#address-cells indicates how many 32 bit cells are used to represent address. In other
word, the address element of each tuple is interpreted according to #address-cell; same
for the size element, which is interpreted according to #size-cell.

Actually, addressable devices inherit from #size-cell and #address-cell of their
parent, which is the node that represents the bus controller. The presence of #size-cell
and #address-cell in a given device does not affect the device itself, but its children. In
other words, before interpreting the reg property of a given node, one must know the
parent node's #address-cells and #size-cells values. The parent node is free to define
whatever addressing scheme is suitable for device sub-nodes (children).

SPI and I2C addressing
SPI and I2C devices both belong to non-memory mapped devices, because their addresses
are not accessible to the CPU. Instead, the parent device's driver (which is the bus controller
driver) would perform indirect access on behalf of the CPU. Each I2C/SPI device is always
represented as a sub-node of the I2C/SPI bus node the device seats on. For nonmemory
mapped device, the #size-cells property is 0, and the size element in addressing the
tuple is empty. It means the reg property for this kind of device is always on cell:

&i2c3 {

 [...]

 status = "okay";

 temperature-sensor@49 {

 compatible = "national,lm73";

 reg = <0x49>;

The Concept of Device Tree

[142]

 };

 pcf8523: rtc@68 {

 compatible = "nxp,pcf8523";

 reg = <0x68>;

 };

};

&ecspi1 {

fsl,spi-num-chipselects = <3>;

cs-gpios = <&gpio5 17 0>, <&gpio5 17 0>, <&gpio5 17 0>;

status = "okay";

[...]

ad7606r8_0: ad7606r8@1 {

 compatible = "ad7606-8";

 reg = <1>;

 spi-max-frequency = <1000000>;

 interrupt-parent = <&gpio4>;

 interrupts = <30 0x0>;

 convst-gpio = <&gpio6 18 0>;

};

};

If one looks at a SoC level file at arch/arm/boot/dts/imx6qdl.dtsi, one will notice that
#size-cells and #address-cells are respectively set to 0 for the former, and 1 for the
last, in both i2c and spi nodes, which are respectively parents of I2C and SPI devices
enumerated in the preceding section. This helps us to understand their reg property, which
is only one cell for the address value, and none for the size value.

I2C device's reg property is used to specify the device's address on the bus. For SPI devices,
reg represents the index of the chip-select line assigned to the device among the list of
chips-select the controller node has. For example, for the ad7606r8 ADC, the chip-select
index is 1, which corresponds to <&gpio5 17 0> in cs-gpios, which is the list of chip-
select of the controller node.

You may ask why I used the I2C/SPI node's phandle: the answer is because I2C/SPI devices
should be declared at board level file (.dts), whereas I2C/SPI buses controller are declared
at SoC level file (.dtsi).

The Concept of Device Tree

[143]

Platform device addressing
This section address simple memory-mapped devices whose memory is accessible to the
CPU. Here, the reg property still defines the device's address, which is a list of memory
regions on which you can access the device. Each region is represented with a tuple of cells,
where the first cell is the base address of the memory region, and the second tuple is the
size of the region. It then has the form reg = <base0 length0 [base1 length1]
[address2 length2] ... >. Each tuple represents an address range used by the device.

In the real world, one should not interpret the reg property without knowing the value of
two other properties,#size-cells and #address-cells. #size-cells tell us how large
the length field is in each child reg tuple. The same for #address-cell, which tell us how
many cells we must use to specify an address.

This kind of device should be declared within a node with a special value compatible =
"simple-bus", meaning a simple memory-mapped bus with no specific handling nor
driver:

soc {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = "simple-bus";

 aips-bus@02000000 { /* AIPS1 */

 compatible = "fsl,aips-bus", "simple-bus";

 #address-cells = <1>;

 #size-cells = <1>;

 reg = <0x02000000 0x100000>;

 [...];

 spba-bus@02000000 {

 compatible = "fsl,spba-bus", "simple-bus";

 #address-cells = <1>;

 #size-cells = <1>;

 reg = <0x02000000 0x40000>;

 [...]

 ecspi1: ecspi@02008000 {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "fsl,imx6q-ecspi", "fsl,imx51-ecspi";

 reg = <0x02008000 0x4000>;

 [...]

 };

 i2c1: i2c@021a0000 {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "fsl,imx6q-i2c", "fsl,imx21-i2c";

The Concept of Device Tree

[144]

 reg = <0x021a0000 0x4000>;

 [...]

 };

 };

 };

In the preceding example, child nodes whose parent has simple-bus in the compatible
property will be registered as platform devices. One can also see how I2C and SPI bus
controllers change the addressing scheme of their children by setting #size-cells =
<0>; because it is not relevant to them. A well-known place to look for any binding
information is in the kernel device tree's documentation: Documentation/devicetree/bindings/.

Handling resources
The main purpose of a driver is to handle and manage devices, and most of the time, expose
their functionalities to the user-space. The objective here is to gather the device's
configuration parameters, and especially resources (memory region, interrupt line, DMA
channel, clocks, and so on).

The following is the device node with which we will work during this section. It is the
i.MX6 UART device's node, defined in arch/arm/boot/dts/imx6qdl.dtsi:

uart1: serial@02020000 {

 compatible = "fsl,imx6q-uart", "fsl,imx21-uart";

reg = <0x02020000 0x4000>;

 interrupts = <0 26 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&clks IMX6QDL_CLK_UART_IPG>,

<&clks IMX6QDL_CLK_UART_SERIAL>;

 clock-names = "ipg", "per";

dmas = <&sdma 25 4 0>, <&sdma 26 4 0>;

dma-names = "rx", "tx";

 status = "disabled";

 };

The Concept of Device Tree

[145]

Concept of named resources
When the driver expect a list of resources of a certain type, one has no guarantee the list is
ordered in a manner the driver expects, since the guy who writes the board level device tree
is usually not the one that wrote the driver. A driver may expect, for example, its device
node with 2 IRQs lines, one for the Tx event at index 0, the other for Rx at index 1. What
happens if the order is not respected? The driver will have an unwanted behavior. To avoid
such mismatches, the concept of named resources (clock, irq, dma, reg) has been
introduced. It consists of defining our resource list, and naming them, so that whatever
their indexes are, a given name will always match the resource.

The corresponding properties to name the resources are as follows:

reg-names: This is for a list of memory regions in reg property
clock-names: This is to name clocks in the clocks property
interrupt-names: This give a name to each interrupt in the interrupts
property
dma-names: This is for the dma property

Now let us create a fake device node entry to explain that:

fake_device {

 compatible = "packt,fake-device";

 reg = <0x4a064000 0x800>, <0x4a064800 0x200>, <0x4a064c00 0x200>;

 reg-names = "config", "ohci", "ehci";

 interrupts = <0 66 IRQ_TYPE_LEVEL_HIGH>, <0 67 IRQ_TYPE_LEVEL_HIGH>;

 interrupt-names = "ohci", "ehci";

 clocks = <&clks IMX6QDL_CLK_UART_IPG>, <&clks IMX6QDL_CLK_UART_SERIAL>;

 clock-names = "ipg", "per";

 dmas = <&sdma 25 4 0>, <&sdma 26 4 0>;

 dma-names = "rx", "tx";

};

The code in the driver to extract each named resource is as follows:

struct resource *res1, *res2;

res1 = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ohci");

res2 = platform_get_resource_byname(pdev, IORESOURCE_MEM, "config");

struct dma_chan *dma_chan_rx, *dma_chan_tx;

dma_chan_rx = dma_request_slave_channel(&pdev->dev, "rx");

dma_chan_tx = dma_request_slave_channel(&pdev->dev, "tx");

inttxirq, rxirq;

txirq = platform_get_irq_byname(pdev, "ohci");

The Concept of Device Tree

[146]

rxirq = platform_get_irq_byname(pdev, "ehci");

structclk *clck_per, *clk_ipg;

clk_ipg = devm_clk_get(&pdev->dev, "ipg");

clk_ipg = devm_clk_get(&pdev->dev, "pre");

This way, you are sure to map the right name to the right resource, without needing to play
with the index anymore.

Accessing registers
Here, the driver will take ownership of the memory region and map it into the virtual
address space. We will discuss more about this in Chapter 11, Kernel Memory Management.

struct resource *res;

void __iomem *base;

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

/*

 * Here one can request and map the memory region

 * using request_mem_region(res->start, resource_size(res), pdev->name)

 * and ioremap(iores->start, resource_size(iores)

 *

 * These function are discussed in chapter 11, Kernel Memory Management.

 */

base = devm_ioremap_resource(&pdev->dev, res);

if (IS_ERR(base))

 return PTR_ERR(base);

platform_get_resource() will set the start and end fields of struct res according to
the memory region present in the first (index 0) reg assignment. Please remember the last
argument of platform_get_resource() represents the resource index. In the preceding
sample, 0 indexes the first value of that resource type, just in case the device is assigned
more than one memory region in the DT node. In our example, it's reg = <0x02020000
0x4000>, meaning that the allocated region starts at physical address 0x02020000 and has
the size of 0x4000 bytes. platform_get_resource() will then set res.start =
0x02020000 and res.end = 0x02023fff.

The Concept of Device Tree

[147]

Handling interrupts
The interrupt interface is actually divided into two parts; the consumer side and the
controller side. Four properties are used to describe interrupt connections in the DT:

The controller is the device that exposes IRQ lines to the consumer. In controller side, on
has the following properties:

interrupt-controller: An empty (Boolean) property that one should define
in order to mark the device as being an interrupt controller
#interrupt-cells: This is a property of interrupt controllers. It states how
many cells are used to specify an interrupt for that interrupt controller

The consumer is the device that generate the IRQ. Consumer binding expects the following
properties:

interrupt-parent: For the device node that generates interrupt, it is a property
that contains a pointer phandle to the interrupt controller node to which the
device is attached. If omitted, the device inherits that property from its parent
node.
interrupts: It is the interrupt specifier.

Interrupt binding and interrupt specifiers are tied to the interrupt controller device. The
number of cells used to define an interrupt input depends on the interrupt controller, which
is the only one deciding, by mean of its #interrupt-cells property. In the case of i.MX6,
the interrupt controller is a Global Interrupt Controller (GIC). Its binding is well explained
in Documentation/devicetree/bindings/arm/gic.txt.

The interrupt handler
This consist of fetching the IRQ number from the DT, and mapping it into Linux IRQ, thus
registering a function callback for it. The driver code to do this is quite simple:

int irq = platform_get_irq(pdev, 0);

ret = request_irq(irq, imx_rxint, 0, dev_name(&pdev->dev), sport);

The Concept of Device Tree

[148]

The platform_get_irq() call will return the irq number; this number is usable by
devm_request_irq() (irqis then visible in /proc/interrupts). The second argument,
0, says that we need the first interrupt specified in the device node. If, there is more than
one interrupt, we can change this index according to the interrupt we need, or just use the
named resource.

In our preceding example, the device node contains an interrupt specifier, which looks like
as follows:

interrupts = <0 66 IRQ_TYPE_LEVEL_HIGH>;

According to ARM GIC, the first cell informs us about interrupt type:
0: Shared peripheral interrupt(SPI), for interrupts signal shared
among cores, which can be routed by the GIC to any core
1: Private peripheral interrupt (PPI), for interrupt signal private to
an individual core

The documentation can be found at:http:/​/​infocenter.​arm.​com/​help/​index.​jsp?​topic=​/
com.​arm.​doc.​ddi0407e/​CCHDBEBE.​html.

The second cell holds the interrupt number. This number depends on whether
the interrupt line is a PPI or SPI.
The third cell, IRQ_TYPE_LEVEL_HIGH in our case, represents sense level. All of
the available sense levels are defined in include/linux/irq.h.

Interrupt controller code
The interrupt-controller property is used to declare a device as an interrupt
controller. The #interrupt-cells property defines how many cells must be used to
define a single interrupt line. We will discuss this in detail in Chapter 16, Advanced IRQ
Management .

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CCHDBEBE.html

The Concept of Device Tree

[149]

Extract application-specific data
Application-specific data is data beyond the common properties (neither resources nor
GPIOs, regulator, and so on). Those are arbitrary properties and child nodes that can be
assigned to a device. Such property names are usually prefixed with manufacture codes.
These can be any string, Boolean, or integer values, along with their API defined in
drivers/of/base.c in the Linux sources. The following examples we discuss are not
exhaustive. Let us now reuse the node defined earlier in this chapter:

node_label: nodename@reg{

 string-property = ""a string"";

 string-list = ""red fish"", ""blue fish"";

 one-int-property = <197>; /* One cell in this property */

 int-list-property = <0xbeef 123 0xabcd4>;/* each number (cell) is 32

a * bit integer(uint32). There

 * are 3 cells in this property

 */

 mixed-list-property = "a string", <0xadbcd45>, <35>, [0x01 0x23 0x45]

 byte-array-property = [0x01 0x23 0x45 0x67];

 one-cell-property = <197>;

 boolean-property;

};

Text string
The following is one string property:

string-property = "a string";

Back in the driver, one should use of_property_read_string()to read a string value. Its
prototype is defined as follows:

int of_property_read_string(const struct device_node *np, const

 char *propname, const char **out_string)

The following code shows how you can use it:

const char *my_string = NULL;

of_property_read_string(pdev->dev.of_node, "string-property", &my_string);

The Concept of Device Tree

[150]

Cells and unsigned 32-bit integers
The following are our int properties:

one-int-property = <197>;

int-list-property = <1350000 0x54dae47 1250000 1200000>;

One should use of_property_read_u32() to read a cell value. Its prototype is defined as
follows:

int of_property_read_u32_index(const struct device_node *np,

 const char *propname, u32 index, u32 *out_value)

Back in the driver,

unsigned int number;

of_property_read_u32(pdev->dev.of_node, "one-cell-property", &number);

One can use of_property_read_u32_array to read a list of cells. Its prototype is as
follows:

int of_property_read_u32_array(const struct device_node *np,

 const char *propname, u32 *out_values, size_tsz);

Here, sz is the number of array elements to read. Have a look at drivers/of/base.c to
see how to interpret its return value:

unsigned int cells_array[4];

if (of_property_read_u32_array(pdev->dev.of_node, "int-list-property",

cells_array, 4)) {

 dev_err(&pdev->dev, "list of cells not specified\n");

 return -EINVAL;

}

The Concept of Device Tree

[151]

Boolean
One should use of_property_read_bool() to read the Boolean property whose name is
given in the second argument of the function:

bool my_bool = of_property_read_bool(pdev->dev.of_node, "boolean-

property");

If(my_bool){

 /* boolean is true */

} else

 /* Bolean is false */

}

Extract and parse sub-nodes
You are allowed to add any sub-node in your device node. Given a node representing a
flash memory device, partitions can be represented as sub-nodes. For a device that handles
a set of input and output GPIO, each set can be represented as a sub-node. The sample node
is as follows:

eeprom: ee24lc512@55 {

 compatible = "microchip,24xx512";

reg = <0x55>;

 partition1 {

 read-only;

 part-name = "private";

 offset = <0>;

 size = <1024>;

 };

 partition2 {

 part-name = "data";

 offset = <1024>;

 size = <64512>;

 };

 };

The Concept of Device Tree

[152]

One can use for_each_child_of_node() to walk through sub-nodes of the given node:

struct device_node *np = pdev->dev.of_node;

struct device_node *sub_np;

for_each_child_of_node(np, sub_np) {

 /* sub_np will point successively to each sub-node */

 [...]

int size;

 of_property_read_u32(client->dev.of_node,

"size", &size);

 ...

 }

Platform drivers and DT
Platform drivers also work with DT. That being said, it is the recommended way to deal
with platform devices nowadays, and there is no need to touch board files anymore, or even
to recompile the kernel when a device's property changes. If you remember, in the previous
chapter we discussed OF match style, which is a matching mechanism based on the DT. Let
us see in the following section how it works:

OF match style
OF match style is the first matching mechanism performed by the platform core in order to
match devices with their drivers. It uses the device tree's compatible property to match
the device entry in of_match_table, which is a field of the struct driver substructure.
Each device node has a compatible property, which is a string, or a list of strings. Any
platform driver that declares one of the strings listed in the compatible property will
trigger a match and will see its probe function executed.

A DT match entry is described in the kernel as an instance of the struct of_device_id
structure, which is defined in linux/mod_devicetable.h and looks like:

// we are only interested in the two last elements of the structure

struct of_device_id {

 [...]

 char compatible[128];

 const void *data;

};

The Concept of Device Tree

[153]

The following is the meaning of each element of the structure:

char compatible[128]: This is the string used to match the device node's
compatible property in the DT. They must be identical before a match occurs.
const void *data: This can point to any structure, which can be used as per-
device type configuration data.

Since the of_match_table is a pointer, you can pass an array of the struct
of_device_id to make your driver compatible with more than one device:

static const struct of_device_id imx_uart_dt_ids[] = {

 { .compatible = "fsl,imx6q-uart", },

 { .compatible = "fsl,imx1-uart", },

 { .compatible = "fsl,imx21-uart", },

 { /* sentinel */ }

};

Once you have filled your array of ids, it must be passed to the of_match_table field of
your platform driver, in the driver substructure:

static struct platform_driver serial_imx_driver = {

 [...]

 .driver = {

 .name = "imx-uart",

 .of_match_table = imx_uart_dt_ids,

 [...]

 },

};

At this step, only your driver is aware of your of_device_id array. To get the kernel
informed too (so that it can store your IDs in the device list maintained by the platform
core), your array has to be registered with MODULE_DEVICE_TABLE, as described in Chapter
5, Platform Device Drivers:

MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);

That is all! Our driver is DT-compatible. Back in our DT, let's declare a device compatible
with our driver:

uart1: serial@02020000 {

 compatible = "fsl,imx6q-uart", "fsl,imx21-uart";

 reg = <0x02020000 0x4000>;

 interrupts = <0 26 IRQ_TYPE_LEVEL_HIGH>;

 [...]

};

The Concept of Device Tree

[154]

Two compatible strings are provided here. If the first one does not match any driver, the
core will perform the match with the second.

When a match occurs, the probe function of your driver is called, with a struct
platform_device structure as the parameter, which contains a struct device dev
field, in which there is a field struct device_node *of_node that corresponds to the
node associated to our device, so that one can use it to extract the device settings:

static int serial_imx_probe(struct platform_device *pdev)

{

 [...]

struct device_node *np;

np = pdev->dev.of_node;

 if (of_get_property(np, "fsl,dte-mode", NULL))

 sport->dte_mode = 1;

 [...]

 }

One can check if the DT node is set to know whether the driver has been loaded in response
to an of_match, or instantiated from within the board's init file. You should then use the
of_match_device function, in order to pick the struct *of_device_id entry that
originated the match, which may contain the specific data you have passed:

static int my_probe(struct platform_device *pdev)

{

struct device_node *np = pdev->dev.of_node;

const struct of_device_id *match;

 match = of_match_device(imx_uart_dt_ids, &pdev->dev);

 if (match) {

 /* Devicetree, extract the data */

 my_data = match->data

 } else {

 /* Board init file */

 my_data = dev_get_platdata(&pdev->dev);

 }

 [...]

}

The Concept of Device Tree

[155]

Dealing with non-device tree platforms
DT support is enabled in the kernel with the CONFIG_OF option. One would probably want
to avoid using the DT API when its support is not enabled in the kernel. The way one can
achieve that is to check whether CONFIG_OF is set or not. People used to do something like
as follows:

#ifdef CONFIG_OF

 static const struct of_device_id imx_uart_dt_ids[] = {

 { .compatible = "fsl,imx6q-uart", },

 { .compatible = "fsl,imx1-uart", },

 { .compatible = "fsl,imx21-uart", },

 { /* sentinel */ }

 };

 /* other devicetree dependent code */

 [...]

#endif

Even if the of_device_id data type is always defined when device tree support is missing,
the code wrapped into #ifdef CONFIG_OF ... #endif will be omitted during the build.
This is used for conditional compilation. It is not your only choice; there is also the
of_match_ptr macro, which simply returns NULL when OF is disabled. Everywhere you'll
need to pass your of_match_table as a parameter, it should be wrapped in the
of_match_ptr macro, so that it returns NULL when OF is disabled. The macro is defined in
include/linux/of.h:

#define of_match_ptr(_ptr) (_ptr) /* When CONFIG_OF is enabled */

#define of_match_ptr(_ptr) NULL /* When it is not */

And we can use it as follows:

static int my_probe(struct platform_device *pdev)

{

 const struct of_device_id *match;

 match = of_match_device(of_match_ptr(imx_uart_dt_ids),

 &pdev->dev);

 [...]

}

static struct platform_driver serial_imx_driver = {

 [...]

 .driver = {

 .name = "imx-uart",

 .of_match_table = of_match_ptr(imx_uart_dt_ids),

 },

};

The Concept of Device Tree

[156]

This eliminates having a #ifdef, returning NULL when OF is disabled.

Support multiple hardware with per device-specific data
Sometimes, a driver can support different hardware, each with is specific configuration
data. That data may be dedicated function tables, specific register values, or anything
unique to each hardware. The following example describes a generic approach:

Let us first remember what struct of_device_id looks like, in
include/linux/mod_devicetable.h.

/*

 * Struct used for matching a device

 */

struct of_device_id {

 [...]

 char compatible[128];

const void *data;

};

The field we are interested in is const void *data, so we can use it to pass any data for
each specific device.

Let's say we own three different devices, each with a specific private data.
of_device_id.data will contain a pointer to specific parameters. This example is inspired
by drivers/tty/serial/imx.c.

First, we declare private structures:

/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */

enum imx_uart_type {

 IMX1_UART,

 IMX21_UART,

 IMX6Q_UART,

};

/* device type dependent stuff */

struct imx_uart_data {

 unsigned uts_reg;

 enum imx_uart_type devtype;

};

The Concept of Device Tree

[157]

Then we fill an array with each device-specific data:

static struct imx_uart_data imx_uart_devdata[] = {

 [IMX1_UART] = {

 .uts_reg = IMX1_UTS,

 .devtype = IMX1_UART,

 },

 [IMX21_UART] = {

 .uts_reg = IMX21_UTS,

 .devtype = IMX21_UART,

 },

 [IMX6Q_UART] = {

 .uts_reg = IMX21_UTS,

 .devtype = IMX6Q_UART,

 },

};

Each compatible entry is tied with a specific array index:

static const struct of_device_idimx_uart_dt_ids[] = {

 { .compatible = "fsl,imx6q-uart", .data =

&imx_uart_devdata[IMX6Q_UART], },

 { .compatible = "fsl,imx1-uart", .data =

&imx_uart_devdata[IMX1_UART], },

 { .compatible = "fsl,imx21-uart", .data =

&imx_uart_devdata[IMX21_UART], },

 { /* sentinel */ }

};

MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);

static struct platform_driver serial_imx_driver = {

 [...]

 .driver = {

 .name = "imx-uart",

 .of_match_table = of_match_ptr(imx_uart_dt_ids),

 },

};

Now in the probe function, whatever the match entry is, it will hold a pointer to the device-
specific structure:

static int imx_probe_dt(struct platform_device *pdev)

{

 struct device_node *np = pdev->dev.of_node;

 const struct of_device_id *of_id =

 of_match_device(of_match_ptr(imx_uart_dt_ids), &pdev->dev);

 if (!of_id)

The Concept of Device Tree

[158]

 /* no device tree device */

 return 1;

 [...]

 sport->devdata = of_id->data; /* Get private data back */

}

In the preceding code, devdata is an element of a structure in the original source, and
declared like const struct imx_uart_data *devdata; we could have stored any
specific parameter in the array.

Match style mixing
OF match style can be combined with any other matching mechanism. In the following
example, we have a mix of DT and device ID match styles:

We fill an array for the device ID match style, each device having its data:

static const struct platform_device_id sdma_devtypes[] = {

 {

 .name = "imx51-sdma",

 .driver_data = (unsigned long)&sdma_imx51,

 }, {

 .name = "imx53-sdma",

 .driver_data = (unsigned long)&sdma_imx53,

 }, {

 .name = "imx6q-sdma",

 .driver_data = (unsigned long)&sdma_imx6q,

 }, {

 .name = "imx7d-sdma",

 .driver_data = (unsigned long)&sdma_imx7d,

 }, {

 /* sentinel */

 }

};

MODULE_DEVICE_TABLE(platform, sdma_devtypes);

The Concept of Device Tree

[159]

We do the same for OF match style:

static const struct of_device_idsdma_dt_ids[] = {

 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },

 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },

 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },

 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },

 { /* sentinel */ }

};

MODULE_DEVICE_TABLE(of, sdma_dt_ids);

The probe function will look as follows:

static int sdma_probe(structplatform_device *pdev)

{

conststructof_device_id *of_id =

of_match_device(of_match_ptr(sdma_dt_ids), &pdev->dev);

structdevice_node *np = pdev->dev.of_node;

 /* If devicetree, */

 if (of_id)

drvdata = of_id->data;

 /* else, hard-coded */

 else if (pdev->id_entry)

drvdata = (void *)pdev->id_entry->driver_data;

 if (!drvdata) {

dev_err(&pdev->dev, "unable to find driver data\n");

 return -EINVAL;

 }

 [...]

}

Then we declare our platform driver; feed all arrays defined as in the preceding sections:

static struct platform_driversdma_driver = {

 .driver = {

 .name = "imx-sdma",

 .of_match_table = of_match_ptr(sdma_dt_ids),

 },

 .id_table = sdma_devtypes,

 .remove = sdma_remove,

 .probe = sdma_probe,

};

module_platform_driver(sdma_driver);

The Concept of Device Tree

[160]

Platform resources and DT
Platform devices can work with the device tree enabled system without any extra
modification. It is what we have demonstrated in the section Handling resources. By using
platform_xxx family function, the core also walks through the DT (with of_xxx family
function) to find the requested resource. The reverse is not true, since of_xxx family
function is only reserved for the DT. All resource data will be available to the driver in a
usual way. The driver now knows whether this device is not initialized with hardcoded
parameters in the board file or not. Let us take an example with an uart device node:

uart1: serial@02020000 {

 compatible = "fsl,imx6q-uart", "fsl,imx21-uart";

reg = <0x02020000 0x4000>;

 interrupts = <0 26 IRQ_TYPE_LEVEL_HIGH>;

dmas = <&sdma 25 4 0>, <&sdma 26 4 0>;

dma-names = "rx", "tx";

};

The following excerpt describes the probe function of its driver. In the probe, the function
platform_get_resource() can be used to extract any property which is a resource
(memory region, dma, irq), or a specific function, such as platform_get_irq(), which
extracts the irq provided by the interrupts property in the DT:

static int my_probe(struct platform_device *pdev)

{

struct iio_dev *indio_dev;

struct resource *mem, *dma_res;

struct xadc *xadc;

int irq, ret, dmareq;

 /* irq */

irq = platform_get_irq(pdev, 0);

 if (irq<= 0)

 return -ENXIO;

 [...]

 /* memory region */

mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);

xadc->base = devm_ioremap_resource(&pdev->dev, mem);

 /*

 * We could have used

 * devm_ioremap(&pdev->dev, mem->start, resource_size(mem));

 * too.

 */

 if (IS_ERR(xadc->base))

 return PTR_ERR(xadc->base);

The Concept of Device Tree

[161]

 [...]

 /* second dma channel */

dma_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);

dmareq = dma_res->start;

 [...]

}

To sum up, for properties such as dma, irq and mem, you have nothing to do in the platform
driver to match dtb. If one remembers, this data is of the same type as the data one can pass
as a platform resource. To understand why, we just have to look inside these functions; we
will see how each of them internally deals with DT functions. The following is an example
of the platform_get_irq function:

int platform_get_irq(struct platform_device *dev, unsigned int num)

{

 [...]

 struct resource *r;

 if (IS_ENABLED(CONFIG_OF_IRQ) &&dev->dev.of_node) {

 int ret;

 ret = of_irq_get(dev->dev.of_node, num);

 if (ret > 0 || ret == -EPROBE_DEFER)

 return ret;

 }

 r = platform_get_resource(dev, IORESOURCE_IRQ, num);

 if (r && r->flags & IORESOURCE_BITS) {

 struct irq_data *irqd;

 irqd = irq_get_irq_data(r->start);

 if (!irqd)

 return -ENXIO;

 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);

 }

 return r ? r->start : -ENXIO;

}

The Concept of Device Tree

[162]

One may wonder how the platform_xxx functions extract resources from the DT. This
should have been the of_xxx function family. You are right, but during the system boot,
the kernel calls of_platform_device_create_pdata() on each device node, which will
result in creating a platform device with the associated resource, on which you can call the
platform_xxx family function. Its prototype is as follows:

static struct platform_device *of_platform_device_create_pdata(

 struct device_node *np, const char *bus_id,

 void *platform_data, struct device *parent)

Platform data versus DT
If your driver expects platform data, you should check the dev.platform_data pointer. A
non-null value means your driver has been instantiated the old way in the board
configuration file, and DT does not enter into it. For drivers instantiated from the DT,
dev.platform_data will be NULL, and your platform device will be given a pointer on the
DT entry (node) that corresponds to your device in the dev.of_node pointer, from which
one can extract the resource and use OF API to parse and extract application data.

There's also a hybrid method that one can use to associate platform data
declared in the C files to DT nodes, but that's for special cases only: for
DMA, IRQ, and memory. This method is used only when the driver
expects only resources, and no application-specific data.

One can transform a legacy declaration of an I2C controller into DT-compatible nodes as
follows:

#define SIRFSOC_I2C0MOD_PA_BASE 0xcc0e0000

#define SIRFSOC_I2C0MOD_SIZE 0x10000

#define IRQ_I2C0

static struct resource sirfsoc_i2c0_resource[] = {

 {

 .start = SIRFSOC_I2C0MOD_PA_BASE,

 .end = SIRFSOC_I2C0MOD_PA_BASE + SIRFSOC_I2C0MOD_SIZE - 1,

 .flags = IORESOURCE_MEM,

 },{

 .start = IRQ_I2C0,

 .end = IRQ_I2C0,

 .flags = IORESOURCE_IRQ,

 },

};

The Concept of Device Tree

[163]

And the DT node:

i2c0: i2c@cc0e0000 {

 compatible = "sirf,marco-i2c";

 reg = <0xcc0e0000 0x10000>;

 interrupt-parent = <&phandle_to_interrupt_controller_node>

 interrupts = <0 24 0>;

 #address-cells = <1>;

 #size-cells = <0>;

 status = "disabled";

};

Summary
The time to switch from hardcoded device configuration to DT has come. This chapter gave
you all you need to handle DTs. Now you have the necessary skills to customize or add
whatever node and property you want into the DT, and extract them from within your
driver. In the next chapter, we will talk about the I2C driver, and use the DT API to
enumerate and configure our I2C devices.

7
I2C Client Drivers

I2C bus, invented by Philips (now NXP) is a two-wire: Serial Data (SDA), Serial Clock
(SCL) asynchronous serial bus. It is a multi-master bus, though multi-master mode is not
widely used. Both SDA and SCL are open drain/open collector, meaning that each of these
can drive its output low, but none of these can drive its output high without having pull-up
resistors. SCL is generated by the master in order to synchronize data (carried by SDA)
transfer over the bus. Both slave and master can send data (not at the same time of course),
thus making SDA a bidirectional line. That said the SCL signal is also bidirectional, since
slave can stretch the clock by keeping the SCL line low. The bus is controlled by the master,
which in our case is a part of the SoC. This bus is frequently used in embedded systems to
connect serial EEPROM, RTC chips, GPIO expander, temperature sensors, and so on:

I2C bus and devices

I2C Client Drivers

[165]

Clock speed varies from 10 KHz to 100 KHz, and 400 KHz to 2 MHz. We will not cover bus
specifications or bus drivers in this book. However, it is up to the bus driver to manage the
bus and take care of the specifications. An example of a bus driver for the i.MX6 chip can be
found at drivers/i2C/busses/i2c-imx.c in kernel source, and I2C specifications can be
found at http://www.nxp.com/documents/user_manual/UM10204.pdf.

In this chapter, we are interested in client drivers, in order to handle slave devices seated on
the bus. The chapter will cover the following topics:

I2C client driver architecture
Accessing the device, thus reading/writing data from/to device
Declaring clients from DT

The driver architecture
When the device for which you write the driver takes a seat on a physical bus called the bus
controller, it must rely on the driver of that bus called the controller driver, responsible for
sharing bus access between devices. The controller driver offers an abstraction layer
between your device and the bus. Whenever you perform a transaction (read or write) on
an I2C or USB bus for example, the I2C/USB bus controller transparently takes care of that
in the background. Every bus controller driver exports a set of functions to ease the
development of drivers for devices sitting on that bus. This works for every physical bus
(I2C, SPI, USB, PCI, SDIO, and so on).

An I2C driver is represented in the kernel as an instance of struct i2c_driver. The I2C
client (which represents the device itself) is represented by a struct i2c_client
structure.

The i2c_driver structure
An I2C driver is declared in kernel as an instance of struct i2c_driver, which looks as
follows:

struct i2c_driver {

 /* Standard driver model interfaces */

int (*probe)(struct i2c_client *, const struct i2c_device_id *);

int (*remove)(struct i2c_client *);

 /* driver model interfaces that don't relate to enumeration */

 void (*shutdown)(struct i2c_client *);

http://www.nxp.com/documents/user_manual/UM10204.pdf

I2C Client Drivers

[166]

struct device_driver driver;

const struct i2c_device_id *id_table;

};

The struct i2c_driver structure contains and characterizes general access routines,
needed to handle the devices claiming the driver, whereas struct i2c_client contains
device-specific information, like its address. A struct i2c_client structure represents
and characterizes an I2C device. Later in this chapter, we will see how to populate these
structures.

The probe() function
The probe() function is a part of the struct i2c_driver structure, and is executed any
time once an I2C device is instantiated. It is responsible for the following tasks:

Check whether the device is the one you expected
Check whether your I2C bus controller of the SoC supports the functionality
needed by your device, using the i2c_check_functionality function
Initialize the device
Set up device specific data
Register the appropriate kernel framework

The probe function's prototype is as follows:

static int foo_probe(struct i2c_client *client, const struct

 i2c_device_id *id)

As you can see, its parameters are:

struct i2c_client pointer: This represents the I2C device itself. This structure
inherits from the structure device, and is provided to your probe function by the
kernel. The client structure is defined in include/linux/i2c.h. Its definition is
as follows:

struct i2c_client {

 unsigned short flags; /* div., see below */

 unsigned short addr; /* chip address - NOTE: 7bit */

 /* addresses are stored in the */

 /* _LOWER_ 7 bits */

 char name[I2C_NAME_SIZE];

 struct i2c_adapter *adapter; /* the adapter we sit on */

 struct device dev; /* the device structure */

 intirq; /* irq issued by device */

I2C Client Drivers

[167]

 struct list_head detected;

 #if IS_ENABLED(CONFIG_I2C_SLAVE)

 i2c_slave_cb_t slave_cb; /* callback for slave mode */

 #endif

};

All fields are filled by the kernel, based on the parameter you provided to register
the client. We will see later how to register a device to the kernel.
struct i2c_device_id pointer: This points to the I2C device ID entry that
matched the device that is being probed.

Per-device data

The I2C core offers you the possibility to store a pointer to any data structure of your choice,
as device-specific data. To store or retrieve the data, use the following function provided by
the I2C core:

/* set the data */

void i2c_set_clientdata(struct i2c_client *client, void *data);

/* get the data */

void *i2c_get_clientdata(const struct i2c_client *client);

These functions internally call dev_set_drvdata and dev_get_drvdata to update or get
the value of the void *driver_data field of the struct device substructure in the
struct i2c_client structure.

This is an example of how to use extra client data; an excerpt from drivers/gpio/gpio-
mc9s08dz60.c:

/* This is the device specific data structure */

struct mc9s08dz60 {

 struct i2c_client *client;

 struct gpio_chip chip;

};

static int mc9s08dz60_probe(struct i2c_client *client,

const struct i2c_device_id *id)

{

 struct mc9s08dz60 *mc9s;

 if (!i2c_check_functionality(client->adapter,

 I2C_FUNC_SMBUS_BYTE_DATA))

 return -EIO;

 mc9s = devm_kzalloc(&client->dev, sizeof(*mc9s), GFP_KERNEL);

 if (!mc9s)

 return -ENOMEM;

I2C Client Drivers

[168]

 [...]

 mc9s->client = client;

 i2c_set_clientdata(client, mc9s);

 return gpiochip_add(&mc9s->chip);

}

Actually, these functions are not really specific to I2C. They do nothing but get/set the void
*driver_data pointer that is a member of the struct device, and itself is a member of
struct i2c_client. In fact, we could have used dev_get_drvdata and
dev_set_drvdata directly. One can see their definitions in
linux/include/linux/i2c.h.

The remove() function
The prototype of the remove function looks as follows:

static int foo_remove(struct i2c_client *client)

The remove() function also provides the same struct i2c_client* as the probe()
function, so you can retrieve your private data. For example, you may need to process some
cleaning or any other stuff, based on the private data you set up in the probe function:

static int mc9s08dz60_remove(struct i2c_client *client)

{

 struct mc9s08dz60 *mc9s;

 /* We retrieve our private data */

 mc9s = i2c_get_clientdata(client);

 /* Wich hold gpiochip we want to work on */

 return gpiochip_remove(&mc9s->chip);

}

The remove function has the responsibility to unregister us from the subsystem where we
have registered in the probe() function. In the preceding example, we simply remove the
gpiochip from the kernel.

I2C Client Drivers

[169]

Driver initialization and registration
When one's module gets loaded, one may need to do some initializing. Most of the time,
just registering the driver with the I2C core will be sufficient. At the same time, when the
module is unloaded, we will usually just need to get ourselves out from the I2C core. In
chapter 5, Platform Device Drivers we saw that it is not worth while to bother ourselves by
using init/exit functions, but to use module_*_driver functions instead. In this case, the
function to use is:

module_i2c_driver(foo_driver);

Driver and device provisioning
As we have seen in matching mechanisms, we need to provide a device_id array in order
to expose devices that our driver can manage. Since we are talking about I2C devices, the
structure would be i2c_device_id. That array will inform the kernel about the devices
that we are interested in, in the driver.

Now back to our I2C device driver; having a look in
include/linux/mod_devicetable.h, you will see how struct i2c_device_id is
defined:

struct i2c_device_id {

 char name[I2C_NAME_SIZE];

 kernel_ulong_tdriver_data; /* Data private to the driver */

};

That said, the struct i2c_device_id must be embedded in a struct i2c_driver. In
order to let the I2C core (for module auto-loading) know about devices we need to handle,
we must use the MODULE_DEVICE_TABLE macro. The kernel has to be aware of which
probe or remove function to call whenever a match occurs, which is why our probe and
remove functions must also be embedded in the same i2c_driver structure:

static struct i2c_device_id foo_idtable[] = {

 { "foo", my_id_for_foo },

 { "bar", my_id_for_bar },

 { }

};

MODULE_DEVICE_TABLE(i2c, foo_idtable);

static struct i2c_driver foo_driver = {

 .driver = {

 .name = "foo",

I2C Client Drivers

[170]

 },

 .id_table = foo_idtable,

 .probe = foo_probe,

 .remove = foo_remove,

}

Accessing the client
Serial bus transactions are just a matter of accessing registers to set/get their content. I2C
respects that principle. I2C core provides two kind of API, one for plain I2C
communications, and another for SMBUS compatible device, which also works with I2C
devices, but not the reverse.

Plain I2C communication
The following are essential functions one usually deal with when talking to I2C devices:

int i2c_master_send(struct i2c_client *client, const char *buf, int count);

int i2c_master_recv(struct i2c_client *client, char *buf, int count);

Almost all I2C communication functions take a struct i2c_client as the first parameter.
The second parameter contains the bytes to read or write and the third represents the
number of bytes to read or write. Like any read/write function, the returned value is the
number of bytes being read/written. One can also process message transfers with:

int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,

 int num);

i2c_transfer sends a set of messages where each can be either a read or a write
operation, and can be mixed in any way. Remember that there is no stop bit between each
transaction. Looking at include/uapi/linux/i2c.h, a message structure looks as
follows:

struct i2c_msg {

 __u16 addr; /* slave address */

 __u16 flags; /* Message flags */

 __u16 len; /* msg length */

 __u8 *buf; /* pointer to msg data */

};

I2C Client Drivers

[171]

The i2c_msg structure describes and characterizes an I2C message. It must contain, for
each message, the client address, the number of bytes of the message, and the message
payload.

msg.len is a u16. It means you must always be less than 216 (64k) with
your read/write buffers.

Let us have a look at the read function for the microchip I2C 24LC512eeprom character
driver; we should understand how things really work. The full code is provided with the
source of this book.

ssize_t

eep_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)

{

 [...]

 int _reg_addr = dev->current_pointer;

 u8 reg_addr[2];

 reg_addr[0] = (u8)(_reg_addr>> 8);

 reg_addr[1] = (u8)(_reg_addr& 0xFF);

 struct i2c_msg msg[2];

 msg[0].addr = dev->client->addr;

 msg[0].flags = 0; /* Write */

 msg[0].len = 2; /* Address is 2bytes coded */

 msg[0].buf = reg_addr;

 msg[1].addr = dev->client->addr;

 msg[1].flags = I2C_M_RD; /* We need to read */

 msg[1].len = count;

 msg[1].buf = dev->data;

 if (i2c_transfer(dev->client->adapter, msg, 2) < 0)

 pr_err("ee24lc512: i2c_transfer failed\n");

 if (copy_to_user(buf, dev->data, count) != 0) {

 retval = -EIO;

 goto end_read;

 }

 [...]

}

msg.flags should be I2C_M_RD for a read and 0 for a write transaction. Sometimes, you
may not want to create struct i2c_msg but just process simple read and write.

I2C Client Drivers

[172]

System Management Bus (SMBus) compatible
functions
SMBus is a two-wire bus developed by Intel, and very similar to I2C. I2C devices are
SMBus-compatible, but not the reverse. Therefore, it is better to use SMBus functions if one
has a doubt about the chip one is writing the driver for.

The following shows some of the SMBus API:

 s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command);

 s32 i2c_smbus_write_byte_data(struct i2c_client *client,

 u8 command, u8 value);

 s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command);

 s32 i2c_smbus_write_word_data(struct i2c_client *client,

 u8 command, u16 value);

 s32 i2c_smbus_read_block_data(struct i2c_client *client,

 u8 command, u8 *values);

 s32 i2c_smbus_write_block_data(struct i2c_client *client,

 u8 command, u8 length, const u8 *values);

Have a look in include/linux/i2c.h and drivers/i2c/i2c-core.c in the kernel
sources for more explanation.

The following example shows a simple read/write operation in an I2C gpio expander:

struct mcp23016 {

 struct i2c_client *client;

 structgpio_chip chip;

 structmutex lock;

};

[...]

/* This function is called when one needs to change a gpio state */

static int mcp23016_set(struct mcp23016 *mcp,

 unsigned offset, intval)

{

 s32 value;

 unsigned bank = offset / 8 ;

 u8 reg_gpio = (bank == 0) ? GP0 : GP1;

 unsigned bit = offset % 8 ;

 value = i2c_smbus_read_byte_data(mcp->client, reg_gpio);

 if (value >= 0) {

 if (val)

 value |= 1 << bit;

 else

 value &= ~(1 << bit);

I2C Client Drivers

[173]

 return i2c_smbus_write_byte_data(mcp->client,

 reg_gpio, value);

 } else

 return value;

}

[...]

Instantiating I2C devices in the board
configuration file (old and depreciated way)
We must inform the kernel about which devices are physically present on the system. There
are two ways to achieve that. In the DT, as we will see later in the chapter, or through the
board configuration file (which is the old and depreciated way). Let us see how to do that in
the board configuration file:

struct i2c_board_info is the structure used to represent an I2C device on our board.
The structure is defined as follows:

struct i2c_board_info {

 char type[I2C_NAME_SIZE];

 unsigned short addr;

 void *platform_data;

 int irq;

};

Once again, elements not relevant for us have been removed from the structure.

In the preceding structure, type should contain the same value as defined in the device
driver in the i2c_driver.driver.name field. You will then need to fill an array of
i2c_board_info and pass it as a parameter to the i2c_register_board_info function
in the board init routine:

int i2c_register_board_info(int busnum, struct i2c_board_info const *info,

unsigned len)

Here, busnum is the bus number the devices sit on. This is an old and depreciated method,
so I'll not go further into it in this book. Feel free to have a look at
Documentation/i2c/instantiating-devices in the kernel sources to see how things are done.

I2C Client Drivers

[174]

I2C and the device tree
As we have seen in the preceding sections, in order to configure I2C devices, there are
essentially two steps:

Define and register the I2C driver
Define and register the I2C devices

I2C devices belong to nonmemory mapped devices family in the DT, and I2C bus is an
addressable bus (by addressable, I mean you can address a specific device on the bus). In
this, the reg property in the device node represents the device address on the bus.

I2C device nodes are all children of the bus node they seat on. Each device is assigned only
an address. There is no length or range involved. Standard properties one needs to declare
for I2C devices are reg, which represents the address of the device on the bus, and the
compatible string, which is used to match the device with a driver. For more information
on addressing, you can refer to Chapter 6, The Concept of Device Tree.

&i2c2 { /* Phandle of the bus node */

 pcf8523: rtc@68 {

 compatible = "nxp,pcf8523";

 reg = <0x68>;

 };

 eeprom: ee24lc512@55 { /* eeprom device */

 compatible = "packt,ee24lc512";

 reg = <0x55>;

 };

};

The preceding sample declares an HDMI EDID chip at address 0x50, on SoC's I2C bus
number 2, and a real time clock (RTC), at address 0x68 on the same bus.

I2C Client Drivers

[175]

Defining and registering the I2C driver
What we have seen so far does not change. The extra thing we need is to define a struct
of_device_id. Struct of_device_id defined to match the corresponding node in the
.dts file:

/* no extra data for this device */

static const struct of_device_id foobar_of_match[] = {

 { .compatible = "packtpub,foobar-device" },

 {}

};

MODULE_DEVICE_TABLE(of, foobar_of_match);

Now we define the i2c_driver as follows:

static struct i2c_driver foo_driver = {

 .driver = {

 .name = "foo",

 .of_match_table = of_match_ptr(foobar_of_match), /* Only this line is

added */

 },

 .probe = foo_probe,

 .id_table = foo_id,

};

One can then improve the probe function this way:

static int my_probe(struct i2c_client *client, const struct i2c_device_id

*id)

{

 const struct of_device_id *match;

 match = of_match_device(mcp23s08_i2c_of_match, &client->dev);

 if (match) {

 /* Device tree code goes here */

 } else {

 /*

 * Platform data code comes here.

 * One can use

 * pdata = dev_get_platdata(&client->dev);

 *

 * or *id*, which is a pointer on the *i2c_device_id* entry that

originated

 * the match, in order to use *id->driver_data* to extract the

device

 * specific data, as described in platform driver chapter.

 */

 }

I2C Client Drivers

[176]

 [...]

}

Remark
For kernel versions older than 4.10, if one looks at drivers/i2c/i2c-core.c, in the
i2c_device_probe() function (for information, it is the function the kernel calls every
time an I2C device is registered to the I2C core), one will see something like this:

 if (!driver->probe || !driver->id_table)

 return -ENODEV;

This means that even if one does not need to use the .id_table, it is mandatory in the
driver. In fact, one can use the OF match style only, but cannot get rid of .id_table. Kernel
developers tried to remove the need for .id_table and exclusively use .of_match_table
for device matching. The patch is available at this URL:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c80f

52847c50109ca248c22efbf71ff10553dca4.

Nevertheless, regressions have been found and the commit was reverted. Have a look here
for details:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=661f

6c1cd926c6c973e03c6b5151d161f3a666ed. This has been fixed since kernel version >= 4.10.
The fix looks as follows:

/*

 * An I2C ID table is not mandatory, if and only if, a suitable Device

 * Tree match table entry is supplied for the probing device.

 */

if (!driver->id_table &&

 !i2c_of_match_device(dev->driver->of_match_table, client))

 return -ENODEV;

In other words, one must define both .id_table and .of_match_table for the I2C
driver, otherwise your device will not be probed for kernel version 4.10 or earlier.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c80f52847c50109ca248c22efbf71ff10553dca4
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c80f52847c50109ca248c22efbf71ff10553dca4
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=661f6c1cd926c6c973e03c6b5151d161f3a666ed
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=661f6c1cd926c6c973e03c6b5151d161f3a666ed

I2C Client Drivers

[177]

Instantiating I2C devices in the device tree - the
new way
struct i2c_client is the structure used to describe the I2C device. However, with OF
style, this structure could not be defined in the board file anymore. The only thing we need
to do is provide the device's information in the DT and the kernel will build one from it.

The following code shows how we can declare our I2C foobar device node in a dts file:

&i2c3 {

 status = "okay";

 foo-bar: foo@55 {

 compatible = "packtpub,foobar-device";

reg = <55>;

 };

};

Putting it all together
To summarize the steps needed to write I2C client drivers, you need to:

Declare device ids supported by the driver. You can do that using1.
i2c_device_id. If DT is supported, use of_device_id too.
Call MODULE_DEVICE_TABLE(i2c, my_id_table to register your device list2.
with the I2C core. If device tree is supported, you must call
MODULE_DEVICE_TABLE(of, your_of_match_table) to register your device
list with the OF core.
Write the probe and remove functions according to their respective prototypes.3.
If needed, write power management functions too. The probe function must
identify your device, configure it, define per-device (private) data, and register
with the appropriate kernel framework. The driver's behavior depends on what
you have done in the probe function. The remove function must undo
everything you have done in the probe function (free memory and unregister
from any framework).

I2C Client Drivers

[178]

Declare and fill a struct i2c_driver structure and set the id_table field with4.
the array of ids you have created. Set .probe and .remove fields with the name
of the corresponding function you have written above. In the .driver
substructure, set the .owner field to THIS_MODULE, set the driver name, and
finally, set the .of_match_table field with the array of of_device_id if DT is
supported.
Call the module_i2c_driver function with your i2c_driver structure that you5.
just filled above: module_i2c_driver(serial_eeprom_i2c_driver) in order
to register your driver with the kernel.

Summary
We just dealt with I2C device drivers. It is time for you to pick any I2C device on the market
and write the corresponding driver, with DT support. This chapter talked about the kernel
I2C core and associated API, including device tree support, to give you the necessary skills
to talk with I2C devices. You should be able to write efficient probe functions and register
with the kernel I2C core. In the next chapter, we will use skills we learned here to develop
the SPI device driver.

8
SPI Device Drivers

Serial Peripheral Interface (SPI) is a (at least) four-wire bus--Master Input Slave Output
(MISO), Master Output Slave Input (MOSI), Serial Clock (SCK), and Chip Select (CS),
which is used to connect a serial flash, AD/DA converter. The master always generates the
clock. Its speed can reach up to 80 MHz, even if there is no real speed limitation (much
faster than I2C as well). The same for the CS line, which is always managed by the master.

Each of these signal names has a synonym:

Whenever you sees SIMO, SDI, DI, or SDA, they refer to MOSI.
SOMI, SDO, DO, SDA will refer to MISO.
SCK, CLK, SCL will refer to SCK.
S̅ S ̅ is the slave select line, also called CS. CSx can be used (where x is an index,
CS0, CS1), EN and ENB too, meaning enable. The CS is usually an active low
signal:

SPI topology (image from wikipedia)

SPI Device Drivers

[180]

This chapter will walk through SPI driver concepts such as:

SPI bus description
Driver architecture and data structure descriptions
Data sending and receiving in both half and full duplex
Declaring SPI devices from DT
Accessing SPI devices from user space, in both half and full duplex

The driver architecture
The required header for SPI stuff in the Linux kernel is <linux/spi/spi.h>. Before
talking about the driver structure, let us see how SPI devices are defined in the kernel. An
SPI device is represented in the kernel as an instance of spi_device. The instance of the
driver that manages them is struct spi_driver structure.

The device structure
struct spi_device structure represents an SPI device, and is defined in
include/linux/spi/spi.h:

struct spi_device {

 struct devicedev;

 struct spi_master*master;

 u32 max_speed_hz;

 u8 chip_select;

 u8 bits_per_word;

 u16 mode;

 int irq;

 [...]

 int cs_gpio; /* chip select gpio */

};

SPI Device Drivers

[181]

Some fields that are not meaningful for us have been removed. That says, the following is
the meaning of elements in the structure:

master: This represents the SPI controller (bus) on which the device is connected.
max_speed_hz: This is the maximum clock rate to be used with this chip (on the
current board); this parameter can be changed from within the driver. You can
override that parameter using spi_transfer.speed_hz for each transfer. We
will discuss SPI transfer later.
chip_select: This lets you enable the chip you need to talk to, distinguishing
chips handled by the master. The chip_select is active low by default. This
behavior can be changed in mode, by adding the SPI_CS_HIGH flag.
mode: This defines how data should be clocked. The device driver may change
this. The data clocking is Most Significant Bit (MSB) first, by default for each
word in a transfer. This behavior can be overridden by specifying
SPI_LSB_FIRST.
irq: This represents the interrupt number (registered as device resource in your
board init file or through the DT) you should pass to request_irq() to receive
interrupts from this device.

A word about SPI modes; they are built using two characteristics:

CPOL: This is the initial clock polarity:
0: Initial clock state low, and the first edge is rising
1: Initial clock state high, and the first state is falling

CPHA: This is the clock phase, choosing at which edge the data will be sampled:
0: Data latched at falling edge (high to low transition), whereas
output changes at rising edge
1: Data latched at rising edge (low to high transition), and output at
falling edge

This allows for four SPI modes, which are defined in the kernel according to the following
macro in include/linux/spi/spi.h:

#define SPI_CPHA 0x01

#define SPI_CPOL 0x02

SPI Device Drivers

[182]

You can then produce the following array to summarize things:

Mode CPOL CPHA Kernel macro

0 0 0 #define SPI_MODE_0 (0|0)

1 0 1 #define SPI_MODE_1 (0|SPI_CPHA)

2 1 0 #define SPI_MODE_2 (SPI_CPOL|0)

3 1 1 #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)

The following is the representation of each SPI mode, as defined in the preceding array.
That said, only the MOSI line is represented, but the principle is the same for MISO:

Commonly used modes are SPI_MODE_0 and SPI_MODE_3.

SPI Device Drivers

[183]

spi_driver structure
struct spi_driver represents the driver you develop to manage your SPI device. Its
structure is as follows:

struct spi_driver {

 const struct spi_device_id *id_table;

 int (*probe)(struct spi_device *spi);

 int (*remove)(struct spi_device *spi);

 void (*shutdown)(struct spi_device *spi);

 struct device_driver driver;

};

The probe() function
Its prototype is as follows:

static int probe(struct spi_device *spi)

You may refer to Chapter 7, I2C Client Drivers in order to see what is to be done in a probe
function. The same steps apply here. Therefore, unlike an I2C driver that has no capability
to change the controller bus parameters (CS state, bit per word, clock) at runtime, an SPI
driver can. You can set up the bus according to your device properties.

A typical SPI probe function would look like the following:

static int my_probe(struct spi_device *spi)

{

 [...] /* declare your variable/structures */

 /* bits_per_word cannot be configured in platform data */

 spi->mode = SPI_MODE_0; /* SPI mode */

 spi->max_speed_hz = 20000000; /* Max clock for the device */

 spi->bits_per_word = 16; /* device bit per word */

 ret = spi_setup(spi);

 ret = spi_setup(spi);

 if (ret < 0)

 return ret;

 [...] /* Make some init */

 [...] /* Register with apropriate framework */

 return ret;

}

SPI Device Drivers

[184]

The struct spi_device* is an input parameter, given to the probe function by the
kernel. It represents the device you are probing. From within your probe function, you can
get the spi_device_id that triggered the match using spi_get_device_id (in case of
id_table match) and extract the driver data:

const struct spi_device_id *id = spi_get_device_id(spi);

my_private_data = array_chip_info[id->driver_data];

Per-device data

In the probe function, it is a common task to track a private (per-device) data to be used
during the module lifetime. This has been discussed in Chapter 7, I2C Client Drivers.

The following are prototypes of functions one uses for setting/getting per-device data:

/* set the data */

void spi_set_drvdata(struct *spi_device, void *data);

/* Get the data back */

 void *spi_get_drvdata(const struct *spi_device);

For example:

struct mc33880 {

 struct mutex lock;

 u8 bar;

 struct foo chip;

 struct spi_device *spi;

};

static int mc33880_probe(struct spi_device *spi)

{

 struct mc33880 *mc;

 [...] /* Device set up */

 mc = devm_kzalloc(&spi->dev, sizeof(struct mc33880),

 GFP_KERNEL);

 if (!mc)

 return -ENOMEM;

 mutex_init(&mc->lock);

 spi_set_drvdata(spi, mc);

 mc->spi = spi;

 mc->chip.label = DRIVER_NAME,

 mc->chip.set = mc33880_set;

SPI Device Drivers

[185]

 /* Register with appropriate framework */

 [...]

}

The remove() function
The remove function must release every resource grabbed in the probe function. Its
structure is as follows:

static int my_remove(struct spi_device *spi);

A typical remove function may look like the following:

static int mc33880_remove(struct spi_device *spi)

{

 struct mc33880 *mc;

 mc = spi_get_drvdata(spi); /* Get our data back */

 if (!mc)

 return -ENODEV;

 /*

 * unregister from frameworks with which we registered in the

 * probe function

 */

 [...]

 mutex_destroy(&mc->lock);

 return 0;

}

Driver initialization and registration
For device sitting on a bus, whether it is a physical one or the pseudo platform bus, most of
the time, everything is done in the probe function. The init and exit functions are just
used to register/unregister the driver with the bus core:

static int __init foo_init(void)

{

 [...] /*My init code */

 return spi_register_driver(&foo_driver);

}

module_init(foo_init);

static void __exit foo_cleanup(void)

{

 [...] /* My clean up code */

SPI Device Drivers

[186]

 spi_unregister_driver(&foo_driver);

}

module_exit(foo_cleanup);

That said, if you do not do anything else but register/unregister the driver, the kernel offers
a macro:

module_spi_driver(foo_driver);

This will internally call spi_register_driver and spi_unregister_driver. It is
exactly the same thing as what we have seen in the previous chapter.

Driver and devices provisioning
As we need i2c_device_id for I2C devices, we must use spi_device_id for SPI devices,
in order to provide a device_id array to match our devices. It is defined in
include/linux/mod_devicetable.h:

struct spi_device_id {

 char name[SPI_NAME_SIZE];

 kernel_ulong_t driver_data; /* Data private to the driver */

};

We need to embed our array into a struct spi_device_id in order to inform the SPI core
about the device ID we need to manage in the driver and call MODULE_DEVICE_TABLE
macro on the driver structure. Of course, the first parameter of the macro is the name of the
bus on which the device sits. In our case, it is SPI:

#define ID_FOR_FOO_DEVICE 0

#define ID_FOR_BAR_DEVICE 1

static struct spi_device_id foo_idtable[] = {

 { "foo", ID_FOR_FOO_DEVICE },

 { "bar", ID_FOR_BAR_DEVICE },

 { }

};

MODULE_DEVICE_TABLE(spi, foo_idtable);

static struct spi_driver foo_driver = {

 .driver = {

 .name = "KBUILD_MODULE",

 },

 .id_table = foo_idtable,

 .probe = foo_probe,

SPI Device Drivers

[187]

 .remove = foo_remove,

};

module_spi_driver(foo_driver);

Instantiate SPI devices in board configuration file – old
and depreciated way
Device should be instantiated in board file only if the system does not support device tree.
Since device tree has come, this method of instantiating is deprecated. Therefore, let us just
remember that the board file resides in arch/ directory. The structure used to represent an
SPI device is struct spi_board_info, not the struct spi_device we used in the
driver. It is only when you have filled and registered the struct spi_board_info using
the spi_register_board_info function that the kernel will build a struct spi_device
(which will be passed to your driver and register with the SPI core).

Feel free to look at the struct spi_board_info field in include/linux/spi/spi.h.
The definition of spi_register_board_info can be found in drivers/spi/spi.c. Now
let us have a look at some SPI device registration in the board file:

/**

 * Our platform data

 */

struct my_platform_data {

 int foo;

 bool bar;

};

static struct my_platform_data mpfd = {

 .foo = 15,

 .bar = true,

};

static struct spi_board_info

 my_board_spi_board_info[] __initdata = {

 {

 /* the modalias must be same as spi device driver name */

 .modalias = "ad7887", /* Name of spi_driver for this device */

 .max_speed_hz = 1000000, /* max spi clock (SCK) speed in HZ */

 .bus_num = 0, /* Framework bus number */

 .irq = GPIO_IRQ(40),

 .chip_select = 3, /* Framework chip select */

 .platform_data = &mpfd,

 .mode = SPI_MODE_3,

 },{

SPI Device Drivers

[188]

 .modalias = "spidev",

 .chip_select = 0,

 .max_speed_hz = 1 * 1000 * 1000,

 .bus_num = 1,

 .mode = SPI_MODE_3,

 },

};

static int __init board_init(void)

{

 [...]

 spi_register_board_info(my_board_spi_board_info,

ARRAY_SIZE(my_board_spi_board_info));

 [...]

 return 0;

}

[...]

SPI and device tree
Like I2C devices, SPI devices belong to the non memory mapped devices family in the DT,
but are addressable too. Here, the address means the CS index among the list of CS (starting
from 0) given to the controller (the master). As an example, we may have three different SPI
devices seating on the SPI bus, each with its CS line. The master will be given a set of GPIO,
each representing CS to activate a device. If the device X uses the second GPIO line as CS,
we must set its address to 1 (as we always start from 0) in reg property.

The following is a real DT listing for SPI devices:

ecspi1 {

 fsl,spi-num-chipselects = <3>;

 cs-gpios = <&gpio5 17 0>, <&gpio5 17 0>, <&gpio5 17 0>;

 pinctrl-0 = <&pinctrl_ecspi1 &pinctrl_ecspi1_cs>;

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "fsl,imx6q-ecspi", "fsl,imx51-ecspi";

 reg = <0x02008000 0x4000>;

 status = "okay";

 ad7606r8_0: ad7606r8@0 {

 compatible = "ad7606-8";

 reg = <0>;

 spi-max-frequency = <1000000>;

 interrupt-parent = <&gpio4>;

 interrupts = <30 0x0>;

SPI Device Drivers

[189]

 };

 label: fake_spi_device@1 {

 compatible = "packtpub,foobar-device";

 reg = <1>;

 a-string-param = "stringvalue";

 spi-cs-high;

 };

 mcp2515can: can@2 {

 compatible = "microchip,mcp2515";

 reg = <2>;

 spi-max-frequency = <1000000>;

 clocks = <&clk8m>;

 interrupt-parent = <&gpio4>;

 interrupts = <29 IRQ_TYPE_LEVEL_LOW>;

 };

};

There is a new property introduced in SPI device nodes: spi-max-frequency. It represents
the maximum SPI clocking speed of the device in Hz. Whenever you access the device, the
bus controller driver will ensure the clock does not cross this limit. Other properties
commonly used are:

spi-cpol: This is a Boolean (empty property) indicating the device requires
inverse clock polarity mode. It corresponds to CPOL.
spi-cpha: This is an empty property indicating the device requires shifted clock
phase mode. It corresponds to CPHA.
spi-cs-high: By default, SPI devices require CS low to be active. This is a
Boolean property indicating the device requires CS active high.

That said, for a complete list of SPI binding elements, you can refer to
Documentation/devicetree/bindings/spi/spi-bus.txt in the kernel sources.

SPI Device Drivers

[190]

Instantiate SPI devices in device tree - the new way

By filling our device node in the DT properly, the kernel will build a struct spi_device
for us, and give it as a parameter to our SPI core functions. The following is just an excerpt
from the SPI DT listing defined previously:

&ecspi1 {

 status = "okay";

 label: fake_spi_device@1 {

 compatible = "packtpub,foobar-device";

 reg = <1>;

 a-string-param = "stringvalue";

 spi-cs-high;

 };

 };

Define and register SPI driver

Again the principle is the same as that for I2C drivers. We need to define a struct
of_device_id to match devices in the DT, and call the MODULE_DEVICE_TABLE macro to
register with the OF core:

static const struct of_device_id foobar_of_match[] = {

 { .compatible = "packtpub,foobar-device" },

 { .compatible = "packtpub,barfoo-device" },

 {}

};

MODULE_DEVICE_TABLE(of, foobar_of_match);

Then define our spi_driver as the following:

static struct spi_driver foo_driver = {

 .driver = {

 .name = "foo",

 /* The following line adds Device tree */

 .of_match_table = of_match_ptr(foobar_of_match),

 },

 .probe = my_spi_probe,

 .id_table = foo_id,

};

SPI Device Drivers

[191]

You can then improve the probe function this way:

static int my_spi_probe(struct spi_device *spi)

{

 const struct of_device_id *match;

 match = of_match_device(of_match_ptr(foobar_of_match), &spi->dev);

 if (match) {

 /* Device tree code goes here */

 } else {

 /*

 * Platform data code comes here.

 * One can use

 * pdata = dev_get_platdata(&spi->dev);

 *

 * or *id*, which is a pointer on the *spi_device_id* entry that

originated

 * the match, in order to use *id->driver_data* to extract the

device

 * specific data, as described in Chapter 5, Platform Device

Drivers.

 */

 }

 [...]

}

Accessing and talking to the client
The SPI I/O model consists of a set of queued messages. We submit one or more struct
spi_message structures, which are processed and completed synchronously or
asynchronously. A single message consists of one or more structspi_transfer objects,
each of which represents a full duplex SPI transfer. These are two main structures to
exchange data between the driver and the device. They are both defined in
include/linux/spi/spi.h:

SPI message structure

SPI Device Drivers

[192]

struct spi_transfer represents a full duplex SPI transfer:

struct spi_transfer {

 const void *tx_buf;

 void *rx_buf;

 unsigned len;

 dma_addr_t tx_dma;

 dma_addr_t rx_dma;

 unsigned cs_change:1;

 unsigned tx_nbits:3;

 unsigned rx_nbits:3;

#define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */

#define SPI_NBITS_DUAL 0x02 /* 2bits transfer */

#define SPI_NBITS_QUAD 0x04 /* 4bits transfer */

 u8 bits_per_word;

 u16 delay_usecs;

 u32 speed_hz;

};

The following is the meaning of the structure elements:

tx_buf: This buffer contains the data to be written. It should be NULL or left as it
is in case of a read-only transaction. It should be dma-safe in the case where you
need to perform SPI transactions through Direct Memory Access (DMA).
rx_buf: This is a buffer for data to be read (with the same properties as tx_buf),
or NULL in a write-only transaction.
tx_dma: This is the DMA address of tx_buf, in case
spi_message.is_dma_mapped is set to 1. DMA is discussed in Chapter 12,
DMA – Direct Memory Access.
rx_dma: This is the same as tx_dma, but for rx_buf.
len: This represents the size of rx and tx buffers in bytes, meaning they must
have the same size if both are used.
speed_hz: This overrides the default speed, specified in
spi_device.max_speed_hz, but only for the current transfer. If 0, the default
value (provided in struct spi_device structure) is used.
bits_per_word: Data transfer involves one or more words. A word is a unit of
data, whose size in bits may vary according to the need. Here, bits_per_word
represents the size in bits of a word for this SPI transfer. This override the default
value provided in spi_device.bits_per_word. If 0, the default (from
spi_device) is used.

SPI Device Drivers

[193]

cs_change: This determines the state of the chip_select line after this transfer
completes.
delay_usecs: This represents the delay (in microseconds) after this transfer
before (optionally) changing the chip_select status, then starting the next
transfer or completing this spi_message.

At the other side, the struct spi_message is used atomically to wrap one or more SPI
transfers. The SPI bus used will be hogged by the driver until every transfer that constitutes
the message is completed. SPI message structure is defined in include/linux/spi/spi.h
too:

 struct spi_message {

 struct list_head transfers;

 struct spi_device *spi;

 unsigned is_dma_mapped:1;

 /* completion is reported through a callback */

 void (*complete)(void *context);

 void *context;

 unsigned frame_length;

 unsigned actual_length;

 int status;

 };

transfers: This is the list of transfers that constitutes the message. We will see
later how to add a transfer to this list.
is_dma_mapped: This informs the controller whether to use DMA (or not) to
perform the transaction. Your code is then responsible in providing DMA and
CPU virtual addresses for each transfer buffer.
complete: This is a callback called when the transaction is done, and context is
the parameter to be given to the callback.
frame_length: This will be set automatically with the total number of bytes in
the message.
actual_length: This is the number of bytes transferred in all successful
segments.
status: This reports the transfers status. Zero on success, else -errno.

spi_transfer elements in a message are processed in a FIFO order. Until
the message is completed, you have to make sure not to use transfer
buffer, in order to avoid data corruption. You make completion call to
make sure one can.

SPI Device Drivers

[194]

Before a message can be submitted to the bus, it has to be initialized with void
spi_message_init(struct spi_message *message),which will zero each element in
the structure and initialize the transfers list. For each transfer to be added to the message,
you should call void spi_message_add_tail(struct spi_transfer *t, struct
spi_message *m) on that transfer, which will result in enqueuing the transfer into
transfers list. Once done, you have two choices to start the transaction:

Synchronously, using the int spi_sync(struct spi_device *spi, struct
spi_message *message) function, which may sleep and which is not to be
used in an interrupt context. Completion of the callback is not necessary here.
This function is a wrapper around the second function (spi_async()).
Asynchronously, using the spi_async() function, which can be used in an
atomic context too, and whose prototype is int spi_async(struct
spi_device *spi, struct spi_message *message). It is good practice to
provide callback here, since it will be executed upon message complete.

The following is what a single transfer SPI message transaction may look like:

char tx_buf[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0x40, 0x00, 0x00, 0x00,

 0x00, 0x95, 0xEF, 0xBA, 0xAD,

 0xF0, 0x0D,

};

char rx_buf[10] = {0,};

int ret;

struct spi_message single_msg;

struct spi_transfer single_xfer;

single_xfer.tx_buf = tx_buf;

single_xfer.rx_buf = rx_buf;

single_xfer.len = sizeof(tx_buff);

single_xfer.bits_per_word = 8;

spi_message_init(&msg);

spi_message_add_tail(&xfer, &msg);

ret = spi_sync(spi, &msg);

SPI Device Drivers

[195]

Now let us write a multi-transfer message transaction:

struct {

 char buffer[10];

 char cmd[2]

 int foo;

} data;

struct data my_data[3];

initialize_date(my_data, ARRAY_SIZE(my_data));

struct spi_transfer multi_xfer[3];

struct spi_message single_msg;

int ret;

multi_xfer[0].rx_buf = data[0].buffer;

multi_xfer[0].len = 5;

multi_xfer[0].cs_change = 1;

/* command A */

multi_xfer[1].tx_buf = data[1].cmd;

multi_xfer[1].len = 2;

multi_xfer[1].cs_change = 1;

/* command B */

multi_xfer[2].rx_buf = data[2].buffer;

multi_xfer[2].len = 10;

spi_message_init(single_msg);

spi_message_add_tail(&multi_xfer[0], &single_msg);

spi_message_add_tail(&multi_xfer[1], &single_msg);

spi_message_add_tail(&multi_xfer[2], &single_msg);

ret = spi_sync(spi, &single_msg);

There are other helper functions, all built around spi_sync(). Some of them are:

int spi_read(struct spi_device *spi, void *buf, size_t len)

int spi_write(struct spi_device *spi, const void *buf, size_t len)

int spi_write_then_read(struct spi_device *spi,

 const void *txbuf, unsigned n_tx,

void *rxbuf, unsigned n_rx)

Please have a look at include/linux/spi/spi.h to see the complete list. These wrappers
should be used with small amounts of data.

SPI Device Drivers

[196]

Putting it all together
The steps needed to write SPI client drivers are as follows:

Declare device IDs supported by the driver. You can do that using1.
spi_device_id. If DT is supported, use of_device_id too. You can make an
exclusive use of DT.
Call MODULE_DEVICE_TABLE(spi, my_id_table); to register your device list2.
with the SPI core. If DT is supported, you must call MODULE_DEVICE_TABLE(of,
your_of_match_table); to register your device list with the of core.
Write probe and remove functions according to their respective prototypes. The3.
probe function must identify your device, configure it, define per-device
(private) data, configure the bus if needed (SPI mode and so on) using
spi_setup function, and register with the appropriate kernel framework. In the
remove function, simply undo everything done in the probe function.
Declare and fill a struct spi_driver structure, set the id_table field with the4.
array of IDs you have created. Set .probe and .remove fields with the name of
the corresponding functions you have written. In the .driver substructure, set
the .owner field to THIS_MODULE, set the driver name, and finally set the
.of_match_table field with the array of of_device_id , if the DT is
supported.
Call module_spi_driver function with your spi_driver structure you just5.
filled before module_spi_driver(serial_eeprom_spi_driver); in order to
register your driver with the kernel.

SPI user mode driver
There are two ways of using the user mode SPI device driver. To be able to do that, you
need to enable your device with spidev driver. An example would be as follows:

spidev@0x00 {

 compatible = "spidev";

 spi-max-frequency = <800000>; /* It depends on your device */

 reg = <0>; /* correspond tochipselect 0 */

};

SPI Device Drivers

[197]

You can call either the read/write functions or an ioctl(). With calling read/write you can
only read or write at a time. If you need full-duplex read and write, you have to use the
Input Output Control (ioctl) commands . Examples for both are provided. This is the
read/write example. You can compile it either with the cross-compiler of the platform or
with the native compiler on the board:

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

 int i,fd;

 char wr_buf[]={0xff,0x00,0x1f,0x0f};

 char rd_buf[10];

 if (argc<2) {

 printf("Usage:\n%s [device]\n", argv[0]);

 exit(1);

 }

 fd = open(argv[1], O_RDWR);

 if (fd<=0) {

 printf("Failed to open SPI device %s\n",argv[1]);

 exit(1);

 }

 if (write(fd, wr_buf, sizeof(wr_buf)) != sizeof(wr_buf))

 perror("Write Error");

 if (read(fd, rd_buf, sizeof(rd_buf)) != sizeof(rd_buf))

 perror("Read Error");

 else

 for (i = 0; i < sizeof(rd_buf); i++)

 printf("0x%02X ", rd_buf[i]);

 close(fd);

 return 0;

}

SPI Device Drivers

[198]

With IOCTL
The advantage of using IOCTL is that you can work in full duplex. The best example you
can find is documentation/spi/spidev_test.c, in the kernel source tree, of course.

That said, the preceding example using read/write did not change any SPI configuration.
However, the kernel exposes to user space a set of IOCTL commands, which you can use in
order to set up the bus according to the need, just like what is done in DT. The following
example shows how you can change the bus settings:

 #include <stdint.h>

 #include <unistd.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <fcntl.h>

 #include <sys/ioctl.h>

 #include <linux/types.h>

 #include <linux/spi/spidev.h>

static int pabort(const char *s)

{

 perror(s);

 return -1;

}

static int spi_device_setup(int fd)

{

 int mode, speed, a, b, i;

 int bits = 8;

 /*

 * spi mode: mode 0

 */

 mode = SPI_MODE_0;

 a = ioctl(fd, SPI_IOC_WR_MODE, &mode); /* write mode */

 b = ioctl(fd, SPI_IOC_RD_MODE, &mode); /* read mode */

 if ((a < 0) || (b < 0)) {

 return pabort("can't set spi mode");

 }

 /*

 * Clock max speed in Hz

 */

 speed = 8000000; /* 8 MHz */

 a = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); /* Write speed */

 b = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed); /* Read speed */

 if ((a < 0) || (b < 0)) {

SPI Device Drivers

[199]

 return pabort("fail to set max speed hz");

 }

 /*

 * setting SPI to MSB first.

 * Here, 0 means "not to use LSB first".

 * In order to use LSB first, argument should be > 0

 */

 i = 0;

 a = ioctl(dev, SPI_IOC_WR_LSB_FIRST, &i);

 b = ioctl(dev, SPI_IOC_RD_LSB_FIRST, &i);

 if ((a < 0) || (b < 0)) {

 pabort("Fail to set MSB first\n");

 }

 /*

 * setting SPI to 8 bits per word

 */

 bits = 8;

 a = ioctl(dev, SPI_IOC_WR_BITS_PER_WORD, &bits);

 b = ioctl(dev, SPI_IOC_RD_BITS_PER_WORD, &bits);

 if ((a < 0) || (b < 0)) {

 pabort("Fail to set bits per word\n");

 }

 return 0;

}

You can have a look at Documentation/spi/spidev for more information on spidev ioctl
commands. When it comes to sending data over the bus, you can use
SPI_IOC_MESSAGE(N) request, which offers full-duplex access, and composite operations
without chipselect de-activation, thus offering multi-transfer support. It is the equivalent of
kernel spi_sync(). Here a transfer is represented as an instance of struct
spi_ioc_transfer, which is the equivalent of kernel struct spi_transfer, and whose
definition can be found in include/uapi/linux/spi/spidev.h. The following is an
example of usage:

static void do_transfer(int fd)

{

 int ret;

 char txbuf[] = {0x0B, 0x02, 0xB5};

 char rxbuf[3] = {0, };

 char cmd_buff = 0x9f;

 struct spi_ioc_transfer tr[2] = {

 0 = {

 .tx_buf = (unsigned long)&cmd_buff,

 .len = 1,

 .cs_change = 1; /* We need CS to change */

 .delay_usecs = 50, /* wait after this transfer */

SPI Device Drivers

[200]

 .bits_per_word = 8,

 },

 [1] = {

 .tx_buf = (unsigned long)tx,

 .rx_buf = (unsigned long)rx,

 .len = txbuf(tx),

 .bits_per_word = 8,

 },

 };

 ret = ioctl(fd, SPI_IOC_MESSAGE(2), &tr);

 if (ret == 1){

 perror("can't send spi message");

 exit(1);

 }

 for (ret = 0; ret < sizeof(tx); ret++)

 printf("%.2X ", rx[ret]);

 printf("\n");

}

int main(int argc, char **argv)

{

 char *device = "/dev/spidev0.0";

 int fd;

 int error;

 fd = open(device, O_RDWR);

 if (fd < 0)

 return pabort("Can't open device ");

 error = spi_device_setup(fd);

 if (error)

 exit (1);

 do_transfer(fd);

 close(fd);

 return 0;

}

SPI Device Drivers

[201]

Summary
We just dealt with SPI drivers and now can take advantage of this faster serial (and full
duplex) bus. We walked through data transfer over SPI, which is the most important
section. That said, you may need more abstraction in order not to bother with SPI or I2C
APIs. This is where the next chapter comes in, dealing with Regmap API, which offers a
higher and unified level of abstraction, so that SPI (or I2C) commands will become
transparent to you.

9
Regmap API – A Register Map

Abstraction
Before the regmap API was developed, there were redundant codes for the device drivers
dealing with SPI core, I2C core, or both. The principle was the same; accessing the register
for read/write operations. The following figure shows how either SPI or I2C API were
standalone before Regmap was introduced to kernel:

SPI and I2C subsystems before regmap

Regmap API – A Register Map Abstraction

[203]

The regmap API was introduced in version 3.1 of the kernel, to factorize and unify the way
kernel developers access SPI/I2C devices. It is then just a matter of how to initialize,
configure a regmap, and process any read/write/modify operation fluently, whether it is SPI
or I2C:

SPI and I2C subsystems after regmap

This chapter will walk through regmap framework by mean of:

Introducing the main data structures used in by the regmap framework
Walking through regmap configuration
Accessing devices using the regmap API
Introducing the regmap caching system
Providing a complete driver that summarizes the concepts learned previously

Programming with the regmap API
The regmap API is quite simple. There are only a few structures to know. The two most
important structures of this API are struct regmap_config, which represents the
configuration of the regmap, and struct regmap, which is the regmap instance itself. All
of the regmap data structures are defined in include/linux/regmap.h.

Regmap API – A Register Map Abstraction

[204]

regmap_config structure
struct regmap_config stores the configuration of the regmap during the driver's
lifetime. What you set here affects read/write operations. It is the most important structure
in the regmap API. The source looks like this:

struct regmap_config {

 const char *name;

 int reg_bits;

 int reg_stride;

 int pad_bits;

 int val_bits;

 bool (*writeable_reg)(struct device *dev, unsigned int reg);

 bool (*readable_reg)(struct device *dev, unsigned int reg);

 bool (*volatile_reg)(struct device *dev, unsigned int reg);

 bool (*precious_reg)(struct device *dev, unsigned int reg);

 regmap_lock lock;

 regmap_unlock unlock;

 void *lock_arg;

 int (*reg_read)(void *context, unsigned int reg,

 unsigned int *val);

 int (*reg_write)(void *context, unsigned int reg,

 unsigned int val);

 bool fast_io;

 unsigned int max_register;

 const struct regmap_access_table *wr_table;

 const struct regmap_access_table *rd_table;

 const struct regmap_access_table *volatile_table;

 const struct regmap_access_table *precious_table;

 const struct reg_default *reg_defaults;

 unsigned int num_reg_defaults;

 enum regcache_type cache_type;

 const void *reg_defaults_raw;

 unsigned int num_reg_defaults_raw;

 u8 read_flag_mask;

 u8 write_flag_mask;

 bool use_single_rw;

 bool can_multi_write;

 enum regmap_endian reg_format_endian;

Regmap API – A Register Map Abstraction

[205]

 enum regmap_endian val_format_endian;

 const struct regmap_range_cfg *ranges;

 unsigned int num_ranges;

}

reg_bits: This mandatory field is the number of bits in a register's address.
val_bits: This represents the number of bits used to store a register's value. It is
a mandatory field.
writeable_reg: This is an optional callback function. If provided, it is used by
the regmap subsystem when a register needs to be written. Before writing into a
register, this function is automatically called to check whether the register can be
written to or not:

static bool foo_writeable_register(struct device *dev,

 unsigned int reg)

{

 switch (reg) {

 case 0x30 ... 0x38:

 case 0x40 ... 0x45:

 case 0x50 ... 0x57:

 case 0x60 ... 0x6e:

 case 0x70 ... 0x75:

 case 0x80 ... 0x85:

 case 0x90 ... 0x95:

 case 0xa0 ... 0xa5:

 case 0xb0 ... 0xb2:

 return true;

 default:

 return false;

 }

}

readable_reg: This is the same as writeable_reg but for every register read
operation.
volatile_reg: This is a callback function called every time a register needs to be
read or written through the regmap cache. If the register is volatile, the function
should return true. A direct read/write is then performed to the register. If false is
returned, it means the register is cacheable. In this case, the cache will be used for
a read operation, and the cache will be written in the case of a write operation:

static bool foo_volatile_register(struct device *dev,

 unsigned int reg)

{

 switch (reg) {

 case 0x24 ... 0x29:

Regmap API – A Register Map Abstraction

[206]

 case 0xb6 ... 0xb8:

 return true;

 default:

 return false;

 }

}

wr_table: Instead of providing a writeable_reg callback, one could provide a
regmap_access_table, which is a structure holding a yes_range and a
no_range field, both pointers to struct regmap_range. Any register that
belongs to a yes_range entry is considered as writeable, and is considered as not
writeable if it belongs to a no_range.
rd_table: This is same as wr_table, but for any read operation.
volatile_table: Instead of volatile_reg, one could provide
volatile_table. The principle is then the same as wr_table or rd_table, but
for the caching mechanism.
max_register: This is optional, it specifies the maximum valid register address,
upon which no operation is permitted.
reg_read: Your device may not support simple I2C/SPI read operations. You'll
then have no choice but to write your own customized read function. reg_read
should then point to that function. That said most devices do not need that.
reg_write: This is the same as reg_read but for write operations.

I highly recommend you look at include/linux/regmap.h for more details on each
element.

The following is a kind of initialization of regmap_config:

static const struct regmap_config regmap_config = {

 .reg_bits = 8,

 .val_bits = 8,

 .max_register = LM3533_REG_MAX,

 .readable_reg = lm3533_readable_register,

 .volatile_reg = lm3533_volatile_register,

 .precious_reg = lm3533_precious_register,

};

Regmap API – A Register Map Abstraction

[207]

regmap initialization
As we said earlier, the regmap API supports both SPI and I2C protocols. Depending on the
protocol you need to support in your driver, you will have to call either
regmap_init_i2c() or regmap_init_sp()i in the probe function. To write a generic
driver, regmap is the best choice.

The regmap API is generic and homogenous. Only the initialization changes between bus
types. Other functions are the same.

It is a good practice to always initialize the regmap in the probe function,
and one must always fill the regmap_config elements prior to initializing
the regmap.

Whether one allocated an I2C or SPI register map, it is freed with regmap_exit function:

void regmap_exit(struct regmap *map)

This function simply release a previously allocated register map.

SPI initialization
Regmap SPI initialization consists of setting the regmap up, so that any device access will
internally be translated into SPI commands. The function that does is regmap_init_spi().

struct regmap * regmap_init_spi(struct spi_device *spi,

const struct regmap_config);

It takes a valid pointer to a struct spi_device structure as a parameter, which is the SPI
device that will be interacted with, and a struct regmap_config that represents the
configuration for the regmap. This function returns either a pointer to the allocated struct
regmap on success, or a value that will be an ERR_PTR() on error.

A full example is as follows:

static int foo_spi_probe(struct spi_device *client)

{

 int err;

 struct regmap *my_regmap;

 struct regmap_config bmp085_regmap_config;

 /* fill bmp085_regmap_config somewhere */

 [...]

 client->bits_per_word = 8;

Regmap API – A Register Map Abstraction

[208]

 my_regmap =

 regmap_init_spi(client,&bmp085_regmap_config);

 if (IS_ERR(my_regmap)) {

 err = PTR_ERR(my_regmap);

 dev_err(&client->dev, "Failed to init regmap: %d\n", err);

 return err;

 }

 [...]

}

I2C initialization
On the other hand, I2C regmap initialization consists of calling regmap_init_i2c() on the
regmap config, which will configure the regmap so that any device access will internally be
translated into I2C commands:

struct regmap * regmap_init_i2c(struct i2c_client *i2c,

const struct regmap_config);

The function takes a struct i2c_client structure as parameter, which is the I2C device
that will used for interaction, along with a pointer to struct regmap_config which
represents the configuration for the regmap. This function returns either a pointer to the
allocated struct regmap on success, or a value that will be an ERR_PTR() on error.

A full example is:

static int bar_i2c_probe(struct i2c_client *i2c,

const struct i2c_device_id *id)

{

 struct my_struct * bar_struct;

 struct regmap_config regmap_cfg;

 /* fill regmap_cfgsome where */

 [...]

 bar_struct = kzalloc(&i2c->dev,

sizeof(*my_struct), GFP_KERNEL);

 if (!bar_struct)

 return -ENOMEM;

 i2c_set_clientdata(i2c, bar_struct);

 bar_struct->regmap = regmap_init_i2c(i2c,

®map_config);

 if (IS_ERR(bar_struct->regmap))

 return PTR_ERR(bar_struct->regmap);

Regmap API – A Register Map Abstraction

[209]

 bar_struct->dev = &i2c->dev;

 bar_struct->irq = i2c->irq;

 [...]

}

Device access functions
The API handles data parsing, formatting, and transmission. In most cases, device accesses
are performed with regmap_read, regmap_write and regmap_update_bits. These are
the three most important functions you should always remember when it comes to
storing/fetching data into/from the device. Their respective prototypes are:

int regmap_read(struct regmap *map, unsigned int reg,

 unsigned int *val);

int regmap_write(struct regmap *map, unsigned int reg,

 unsigned int val);

int regmap_update_bits(struct regmap *map, unsigned int reg,

 unsigned int mask, unsigned int val);

regmap_write: This writes data to the device. If set in regmap_config,
max_register, it will be used to check if the register address you need to read
from is greater or lower. If the register address passed is lower than or equal to,
max_register, then the write operation will be performed; otherwise, the
regmap core will return invalid I/O error (-EIO). Immediately after, the
writeable_reg callback is called. The callback must return true before going
on to the next step. If it returns false, then -EIO is returned and the write
operation stopped. If wr_table is set instead of writeable_reg, then:

If the register address lies in no_range, -EIO is returned.
If the register address lies in yes_range, the next step is
performed.
If the register address is present neither in yes_range nor
no_range, then -EIO is returned and the operation is terminated.
If cache_type != REGCACHE_NONE, then cache is enabled. In this
case, the cache entry is first updated, and then a write to the
hardware is performed; otherwise, a no cache action is performed.
If reg_write callback is provided, it is used to perform the write
operation; otherwise, the generic regmap write function will be
executed.

Regmap API – A Register Map Abstraction

[210]

regmap_read: This reads data from the device. It works exactly like
regmap_write with appropriate data structures (readable_reg, and
rd_table). Therefore, if provided, reg_read is used to perform the read
operation; otherise, the generic remap read function will be performed.

regmap_update_bits function
regmap_update_bits is a three-in-one function. Its prototype is as follows:

int regmap_update_bits(struct regmap *map, unsigned int reg,

 unsigned int mask, unsigned int val)

It performs a read/modify/write cycle on the register map. It is a wrapper on
_regmap_update_bits, which looks as follows:

static int _regmap_update_bits(struct regmap *map,

 unsigned int reg, unsigned int mask,

 unsigned int val, bool *change)

{

 int ret;

 unsigned int tmp, orig;

 ret = _regmap_read(map, reg, &orig);

 if (ret != 0)

 return ret;

 tmp = orig& ~mask;

 tmp |= val & mask;

 if (tmp != orig) {

 ret = _regmap_write(map, reg, tmp);

 *change = true;

 } else {

 *change = false;

 }

 return ret;

}

This way, bits you need to update must be set to 1 in mask, and the corresponding bits
should be set to the value you need to give to them in val.

As an example, to set the first and third bits to 1, the mask should be 0b00000101, and the
value should be 0bxxxxx1x1. To clear the seventh bit, mask must be 0b01000000 and the
value should be 0bx0xxxxxx, and so on.

Regmap API – A Register Map Abstraction

[211]

Special regmap_multi_reg_write function
The purpose of remap_multi_reg_write() function is writing multiple registers to the
device. Its prototype looks like as follows:

int regmap_multi_reg_write(struct regmap *map,

 const struct reg_sequence *regs, int num_regs)

To see how to use that function, you need to know what struct reg_sequence is:

/**

 * Register/value pairs for sequences of writes with an optional delay in

 * microseconds to be applied after each write.

 *

 * @reg: Register address.

 * @def: Register value.

 * @delay_us: Delay to be applied after the register write in microseconds

 */

struct reg_sequence {

 unsigned int reg;

 unsigned int def;

 unsigned int delay_us;

};

And this is how it is used:

static const struct reg_sequence foo_default_regs[] = {

 { FOO_REG1, 0xB8 },

 { BAR_REG1, 0x00 },

 { FOO_BAR_REG1, 0x10 },

 { REG_INIT, 0x00 },

 { REG_POWER, 0x00 },

 { REG_BLABLA, 0x00 },

};

staticint probe (...)

{

 [...]

 ret = regmap_multi_reg_write(my_regmap, foo_default_regs,

 ARRAY_SIZE(foo_default_regs));

 [...]

}

Regmap API – A Register Map Abstraction

[212]

Other device access functions
regmap_bulk_read() and regmap_bulk_write() are used to read/write multiple
registers from/to the device. Use them with large blocks of data.

int regmap_bulk_read(struct regmap *map, unsigned int reg, void

 *val, size_tval_count);

int regmap_bulk_write(struct regmap *map, unsigned int reg,

 const void *val, size_t val_count);

Feel free to look into the regmap header file in the kernel source to see what choices you
have.

regmap and cache
Obviously, regmap supports caching. Whether the cache system is used or not depends on
the value of the cache_type field in regmap_config. Looking at
include/linux/regmap.h, accepted values are:

/* Anenum of all the supported cache types */

enum regcache_type {

 REGCACHE_NONE,

 REGCACHE_RBTREE,

 REGCACHE_COMPRESSED,

 REGCACHE_FLAT,

};

It is set to REGCACHE_NONE by default, meaning that the cache is disabled. Other values
simply define how the cache should be stored.

Your device may have a predefined power-on-reset value in certain registers. Those values
can be stored in an array, so that any read operation returns the value contained in the
array. However, any write operation affects the real register in the device, and updates the
content in the array. It is a kind of a cache that we can use to speed up access to the device.
That array is reg_defaults. Its structure looks like this in the source:

/**

 * Default value for a register. We use an array of structs rather

 * than a simple array as many modern devices have very sparse

 * register maps.

 *

 * @reg: Register address.

 * @def: Register default value.

 */

struct reg_default {

Regmap API – A Register Map Abstraction

[213]

 unsigned int reg;

 unsigned int def;

};

reg_defaults is ignored if cache_type is set to none. If no
default_reg is set but you still enable the cache, the corresponding cache
structure will be created for you.

It is quite simple to use. Just declare it and pass it as a parameter to the regmap_config
structure. Let's have a look at the LTC3589 regulator driver in
drivers/regulator/ltc3589.c:

static const struct reg_default ltc3589_reg_defaults[] = {

{ LTC3589_SCR1, 0x00 },

{ LTC3589_OVEN, 0x00 },

{ LTC3589_SCR2, 0x00 },

{ LTC3589_VCCR, 0x00 },

{ LTC3589_B1DTV1, 0x19 },

{ LTC3589_B1DTV2, 0x19 },

{ LTC3589_VRRCR, 0xff },

{ LTC3589_B2DTV1, 0x19 },

{ LTC3589_B2DTV2, 0x19 },

{ LTC3589_B3DTV1, 0x19 },

{ LTC3589_B3DTV2, 0x19 },

{ LTC3589_L2DTV1, 0x19 },

{ LTC3589_L2DTV2, 0x19 },

};

static const struct regmap_config ltc3589_regmap_config = {

 .reg_bits = 8,

 .val_bits = 8,

 .writeable_reg = ltc3589_writeable_reg,

 .readable_reg = ltc3589_readable_reg,

 .volatile_reg = ltc3589_volatile_reg,

 .max_register = LTC3589_L2DTV2,

 .reg_defaults = ltc3589_reg_defaults,

 .num_reg_defaults = ARRAY_SIZE(ltc3589_reg_defaults),

 .use_single_rw = true,

 .cache_type = REGCACHE_RBTREE,

};

Regmap API – A Register Map Abstraction

[214]

Any read operation on any one of the registers present in the array will immediately return
the value in the array. However, a write operation will be performed on the device itself,
and updates the affected register in the array. This way, reading the LTC3589_VRRCR
register will return 0xff; write any value in that register and it will update its entry in the
array so that any new read operation will return the last written value, directly from the
cache.

Putting it all together
Perform the following steps to set up regmap subsystem:

Set up a struct regmap_config, according to your device's characteristic. Set a1.
register range if needed, default values if any, the cache_type if needed, and so
on. If custom read/write functions are needed, pass them to
reg_read/reg_write fields.
In the probe function, allocate a regmap using regmap_init_i2c or2.
regmap_init_spi depending on the bus: I2C or SPI.
Whenever you need to read/write from/into registers, call remap_[read|write]3.
functions.
When you are done with the regmap, call regmap_exit to free the register map4.
allocated in probe.

A regmap example
To achieve our goal, let's first describe a fake SPI device for which we can write a driver:

8-bit register address
8-bit register values
Max register: 0x80
The write mask is 0x80
Valid address range:

0x20 to 0x4F
0x60 to 0x7F

No custom read/write function needed.

Regmap API – A Register Map Abstraction

[215]

The following is a fake skeleton:

/* mandatory for regmap */

#include <linux/regmap.h>

/* Depending on your need you should include other files */

static struct private_struct

{

 /* Feel free to add whatever you want here */

 struct regmap *map;

 int foo;

};

static const struct regmap_range wr_rd_range[] =

{

 {

 .range_min = 0x20,

 .range_max = 0x4F,

 },{

 .range_min = 0x60,

 .range_max = 0x7F

 },

};

struct regmap_access_table drv_wr_table =

{

 .yes_ranges = wr_rd_range,

 .n_yes_ranges = ARRAY_SIZE(wr_rd_range),

};

struct regmap_access_table drv_rd_table =

{

 .yes_ranges = wr_rd_range,

 .n_yes_ranges = ARRAY_SIZE(wr_rd_range),

};

static bool writeable_reg(struct device *dev, unsigned int reg)

{

 if (reg>= 0x20 &®<= 0x4F)

 return true;

 if (reg>= 0x60 &®<= 0x7F)

 return true;

 return false;

}

static bool readable_reg(struct device *dev, unsigned int reg)

{

 if (reg>= 0x20 &®<= 0x4F)

Regmap API – A Register Map Abstraction

[216]

 return true;

 if (reg>= 0x60 &®<= 0x7F)

 return true;

 return false;

}

static int my_spi_drv_probe(struct spi_device *dev)

{

 struct regmap_config config;

 struct custom_drv_private_struct *priv;

 unsigned char data;

 /* setup the regmap configuration */

 memset(&config, 0, sizeof(config));

 config.reg_bits = 8;

 config.val_bits = 8;

 config.write_flag_mask = 0x80;

 config.max_register = 0x80;

 config.fast_io = true;

 config.writeable_reg = drv_writeable_reg;

 config.readable_reg = drv_readable_reg;

 /*

 * If writeable_reg and readable_reg are set,

 * there is no need to provide wr_table nor rd_table.

 * Uncomment below code only if you do not want to use

 * writeable_reg nor readable_reg.

 */

 //config.wr_table = drv_wr_table;

 //config.rd_table = drv_rd_table;

 /* allocate the private data structures */

 /* priv = kzalloc */

 /* Init the regmap spi configuration */

 priv->map = regmap_init_spi(dev, &config);

 /* Use regmap_init_i2c in case of i2c bus */

 /*

 * Let us write into some register

 * Keep in mind that, below operation will remain same

 * whether you use SPI or I2C. It is and advantage when

 * you use regmap.

 */

 regmap_read(priv->map, 0x30, &data);

 [...] /* Process data */

 data = 0x24;

Regmap API – A Register Map Abstraction

[217]

 regmap_write(priv->map, 0x23, data); /* write new value */

 /* set bit 2 (starting from 0) and 6 of register 0x44 */

 regmap_update_bits(priv->map, 0x44, 0b00100010, 0xFF);

 [...] /* Lot of stuff */

 return 0;

}

Summary
This chapter is all about the regmap API. How easy it is, gives you an idea about how
useful and widely used it is. This chapter has told you everything you need to know about
the regmap API. Now you should be able to convert any standard SPI/I2C driver into a
regmap. The next chapter will cover IIO devices, a framework for an analog to digital
converter. Those kinds of device always sit on top of the SPI/I2C buses. It will be a challenge
for us, at the end of the next chapter, to write an IIO driver using the regmap API.

10
IIO Framework

Industrial I/O (IIO) is a kernel subsystem dedicated to analogic to digitals converters
(ADC) and digital to analogic converters (DAC). With the growing number of sensors
(measurement devices with analogue to digital, or digital to analogue, capabilities) with
different code implementations, scattered over the kernel sources, gathering them became
necessary. This is what IIO framework does, in a generic and homogeneous way. Jonathan
Cameron and the Linux-IIO community have been developing it since 2009.

Accelerometer, Gyroscope, current/voltage measurement chips, light sensors, pressure
sensors, and so on all fall into the IIO family of devices.

The IIO model is based on devices and channels architecture:

Device represents the chip itself. It is the top level of the hierarchy.
Channel represents a single acquisition line of the device. A device may have one
or more channels. For example, an accelerometer is a device with three channels,
one for each axis (X, Y, and Z).

The IIO chip is the physical and hardware sensor/converter. It is exposed to the user space
as a character device (when triggered buffering is supported), and a sysfs directory entry
which will contain a set of files, some of which represent the channels. A single channel is
represented with a single sysfs file entry.

IIO Framework

[219]

These are the two ways to interact with an IIO driver from the user space:

/sys/bus/iio/iio:deviceX/: This represents the sensor along with its
channels
/dev/iio:deviceX: This is a character device which exports the device's events
and data buffer

IIO framework architecture and layout

The preceding figure shows how the IIO framework is organized between kernel and user
space. The driver manages the hardware and report processing to the IIO core, using a set
of facilities and API exposed by the IIO core. The IIO subsystem then abstracts the whole
underlying mechanism to the user space by means of the sysfs interface and character
device, on top of which users can execute system calls.

IIO Framework

[220]

IIO APIs are spread over several header files, listed as following:

#include <linux/iio/iio.h> /* mandatory */

#include <linux/iio/sysfs.h> /* mandatory since sysfs is used */

#include <linux/iio/events.h> /* For advanced users, to manage iio events

*/

#include <linux/iio/buffer.h> /* mandatory to use triggered buffers */

#include <linux/iio/trigger.h>/* Only if you implement trigger in your

driver (rarely used)*/

In this chapter, we will describe and handle every concepts of IIO framework, such as

A walk through its data structure (device, channel, and so on)
Triggered buffer support and continuous capture, along with its sysfs interface
Exploring existing IIO triggers
Capturing data in either one-shot mode or continuous mode
Listing available tools that can help developers in testing their devices

IIO data structures
An IIO device is represented in the kernel as an instance of the struct iio_dev, and
described by a struct iio_info structure. All of the important IIO structures are defined
in include/linux/iio/iio.h.

iio_dev structure
This structure represents the IIO device, describing the device, and the driver. It tells us
about:

How many channels are available on the device?
What modes can the device operate in: one-shot, triggered buffer?

IIO Framework

[221]

What hooks are available for this driver?

struct iio_dev {

 [...]

 int modes;

 int currentmode;

 struct device dev;

 struct iio_buffer *buffer;

 int scan_bytes;

 const unsigned long *available_scan_masks;

 const unsigned long *active_scan_mask;

 bool scan_timestamp;

 struct iio_trigger *trig;

 struct iio_poll_func *pollfunc;

 struct iio_chan_spec const *channels;

 int num_channels;

 const char *name;

 const struct iio_info *info;

 const struct iio_buffer_setup_ops *setup_ops;

 struct cdev chrdev;

};

The complete structure is defined in the IIO header file. Fields that we are not interested in
are removed here.

modes: This represents the different modes supported by the device. Supported
modes are:

INDIO_DIRECT_MODE which says device provides sysfs type
interfaces.
INDIO_BUFFER_TRIGGERED says that the device supports
hardware triggers. This mode is automatically added to your
device when you set up a trigger buffer using the
iio_triggered_buffer_setup() function.
INDIO_BUFFER_HARDWARE shows the device has a hardware
buffer.
INDIO_ALL_BUFFER_MODES is the union of the above two.

currentmode: This represents the mode actually used by the device.
dev: This represents the struct device (according to Linux device model) the IIO
device is tied to.

IIO Framework

[222]

buffer: This is your data buffer, pushed to the user space when using triggered
buffer mode. It is automatically allocated and associated to your device when you
enable trigger buffer support using the iio_triggered_buffer_setup
function.
scan_bytes: This is the number of bytes captured and to be fed to the buffer.
When using trigger buffer from the user space, the buffer should be at least
indio->scan_bytes bytes large.
available_scan_masks: This is an optional array of allowed bit masks. When
using trigger buffer, one can enable channels to be captured and fed into the IIO
buffer. If you do not want to allow some channels to be enabled, you should fill
this array with only allowed ones. The following is an example of providing a
scan mask for an accelerometer (with X, Y, and Z channels):

/*

 * Bitmasks 0x7 (0b111) and 0 (0b000) are allowed.

 * It means one can enable none or all of them.

 * one can't for example enable only channel X and Y

 */

static const unsigned long my_scan_masks[] = {0x7, 0};

indio_dev->available_scan_masks = my_scan_masks;

active_scan_mask: This is a bitmask of enabled channels. Only the data from
those channels should be pushed into the buffer. For example, for an 8 channels
ADC converter, if one only enables the first (0), third (2), and last (7) channels, the
bitmask would be 0b10000101 (0x85). active_scan_mask will be set to 0x85. The
driver can then use the for_each_set_bit macro to walk through each set bit,
fetch the data according to the channel, and fill the buffer.
scan_timestamp: This tells us whether to push the capture timestamp into the
buffer or not. If true, the timestamp will be pushed as the last element of the
buffer. The timestamp is 8 bytes (64bits) large.
trig: This is the current device trigger (when buffer mode is supported).
pollfunc: This is the function run on the trigger being received.
channels: This represents the table channel specification structure, to describe
every channel the device has.
num_channels: This represents the number of channels specified in channels.
name: This represents the device name.
info: Callbacks and constant information from the driver.

IIO Framework

[223]

setup_ops: Set of callback functions to call before and after the buffer is
enabled/disabled. This structure is defined in include/linux/iio/iio.h
shown as follows:

struct iio_buffer_setup_ops {

 int (* preenable) (struct iio_dev *);

 int (* postenable) (struct iio_dev *);

 int (* predisable) (struct iio_dev *);

 int (* postdisable) (struct iio_dev *);

 bool (* validate_scan_mask) (struct iio_dev *indio_dev,

 const unsigned long *scan_mask);

};

setup_ops: If this is not specified, the IIO core uses the default
iio_triggered_buffer_setup_ops defined in
drivers/iio/buffer/industrialio-triggered-buffer.c.
chrdev: This is the associated character device created by the IIO core.

The function used to allocate memory for an IIO device is iio_device_alloc():

struct iio_dev *devm_iio_device_alloc(struct device *dev,

 int sizeof_priv)

dev is the device for which iio_dev is allocated, and sizeof_priv is the memory space
used to allocate for any private structure. This way, passing per-device (private) data
structure is quite straightforward. The function returns NULL if the allocation fails:

struct iio_dev *indio_dev;

struct my_private_data *data;

indio_dev = iio_device_alloc(sizeof(*data));

if (!indio_dev)

 return -ENOMEM;

/*data is given the address of reserved momory for private data */

data = iio_priv(indio_dev);

After the IIO device memory has been allocated, the next step is to fill different fields. Once
done, one has to register the device with the IIO subsystem using iio_device_register
function:

int iio_device_register(struct iio_dev *indio_dev)

The device will be ready to accept requests from the user space after this function executes.
The reverse operation (usually done in the release function) is
iio_device_unregister():

void iio_device_unregister(struct iio_dev *indio_dev)

IIO Framework

[224]

Once unregistered, the memory allocated by iio_device_alloc can be freed with
iio_device_free:

void iio_device_free(struct iio_dev *iio_dev)

Given an IIO device as parameter, one can retrieve the private data in the following
manner:

struct my_private_data *the_data = iio_priv(indio_dev);

iio_info structure
The struct iio_info structure is used to declare the hooks used by the IIO core in order
to read/write channels/attributes values:

struct iio_info {

 struct module *driver_module;

 const struct attribute_group *attrs;

 int (*read_raw)(struct iio_dev *indio_dev,

 struct iio_chan_spec const *chan,

 int *val, int *val2, long mask);

 int (*write_raw)(struct iio_dev *indio_dev,

 struct iio_chan_spec const *chan,

 int val, int val2, long mask);

 [...]

};

Fields that we are not interested in have been removed.

driver_module: This is the module structure used to ensure correct ownership
of chrdevs, usually set to THIS_MODULE.
attrs: This represents the devices attributes.
read_raw: This is the callback run when the user reads a device sysfs file
attribute. The mask parameter is a bitmask that allows us to know which type of
value is requested. The channel parameter lets us know the channel concerned.
It can be for the sampling frequency, the scale used to convert the raw value into
usable value, or the raw value itself.
write_raw: This is the callback used to write values to the device. One can, for
example, use it to set the sampling frequency.

IIO Framework

[225]

The following code shows how to set up a struct iio_info structure:

static const struct iio_info iio_dummy_info = {

 .driver_module = THIS_MODULE,

 .read_raw = &iio_dummy_read_raw,

 .write_raw = &iio_dummy_write_raw,

[...]

/*

 * Provide device type specific interface functions and

 * constant data.

 */

indio_dev->info = &iio_dummy_info;

IIO channels
A channel represents a single acquisition line. An accelerometer will have, for example, 3
channels (X, Y, Z), since each axis represents a single acquisition line. struct
iio_chan_spec is the structure that represents and describes a single channel in the kernel:

 struct iio_chan_spec {

 enum iio_chan_type type;

 int channel;

 int channel2;

 unsigned long address;

 int scan_index;

 struct {

 charsign;

 u8 realbits;

 u8 storagebits;

 u8 shift;

 u8 repeat;

 enum iio_endian endianness;

 } scan_type;

 long info_mask_separate;

 long info_mask_shared_by_type;

 long info_mask_shared_by_dir;

 long info_mask_shared_by_all;

 const struct iio_event_spec *event_spec;

 unsigned int num_event_specs;

 const struct iio_chan_spec_ext_info *ext_info;

 const char *extend_name;

 const char *datasheet_name;

 unsigned modified:1;

 unsigned indexed:1;

 unsigned output:1;

IIO Framework

[226]

 unsigned differential:1;

 };

The following are the meanings of each element in the structure:

type: This specifies which type of measurement the channel makes. In case of
voltage measurement, it should be IIO_VOLTAGE. For a light sensor, it is
IIO_LIGHT. For an accelerometer, IIO_ACCEL is used. All available types are
defined in include/uapi/linux/iio/types.h, as enum iio_chan_type. To
write drivers for a given converter, look into that file to see the type each of your
channels falls in.
channel: This specifies the channel index when .indexed is set to 1.
channel2: This specifies the channel modifier when .modified is set to 1.
modified: This specifies whether a modifier is to be applied to this channel
attribute name or not. In that case, the modifier is set in .channel2. (For
example, IIO_MOD_X, IIO_MOD_Y, IIO_MOD_Z are modifiers for axial-sensors
about the xyz-axis). Available modifier list is defined in the kernel IIO header as
enum iio_modifier. Modifiers only mangle the channel attribute name in
sysfs, not the value.
indexed: This specifies whether the channel attribute name has an index or not.
If yes, the index is specified in the .channel field.
scan_index and scan_type: These fields are used to identify elements from a
buffer, when using buffer triggers. scan_index sets the position of the captured
channel inside the buffer. Channels with a lower scan_index will be placed
before channels with a higher index. Setting .scan_index to -1 will prevent the
channel from buffered capture (no entry in the scan_elements directory).

Channel sysfs attributes exposed to user space are specified in the form of bitmasks.
Depending on their shared information, attributes can be set into one of the following
masks:

info_mask_separate marks the attributes as being specific to this channel.
info_mask_shared_by_type marks the attribute as being shared by all
channels of the same type. The information exported is shared by all channels of
the same type.
info_mask_shared_by_dir marks the attribute as being shared by all channels
of the same direction. The information exported is shared by all channels of the
same direction.

IIO Framework

[227]

info_mask_shared_by_all marks the attribute as being shared by all channels,
whatever their type or direction may be. The information exported is shared by
all channels. Bitmasks for enumeration of those attributes are all defined in
include/linux/iio/iio.h:

enum iio_chan_info_enum {

 IIO_CHAN_INFO_RAW = 0,

 IIO_CHAN_INFO_PROCESSED,

 IIO_CHAN_INFO_SCALE,

 IIO_CHAN_INFO_OFFSET,

 IIO_CHAN_INFO_CALIBSCALE,

 [...]

 IIO_CHAN_INFO_SAMP_FREQ,

 IIO_CHAN_INFO_FREQUENCY,

 IIO_CHAN_INFO_PHASE,

 IIO_CHAN_INFO_HARDWAREGAIN,

 IIO_CHAN_INFO_HYSTERESIS,

 [...]

};

The endianness field should be one of:

enum iio_endian {

 IIO_CPU,

 IIO_BE,

 IIO_LE,

};

Channel attribute naming conventions
The attribute's name is automatically generated by the IIO core with the following pattern:
{direction}_{type}_{index}_{modifier}_{info_mask}:

direction corresponds to the attribute direction, according to the struct
iio_direction structure in drivers/iio/industrialio-core.c:

static const char * const iio_direction[] = {

 [0] = "in",

 [1] = "out",

};

IIO Framework

[228]

type corresponds to the channel type, according to the char array const
iio_chan_type_name_spec:

static const char * const iio_chan_type_name_spec[] = {

 [IIO_VOLTAGE] = "voltage",

 [IIO_CURRENT] = "current",

 [IIO_POWER] = "power",

 [IIO_ACCEL] = "accel",

 [...]

 [IIO_UVINDEX] = "uvindex",

 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",

 [IIO_COUNT] = "count",

 [IIO_INDEX] = "index",

 [IIO_GRAVITY] = "gravity",

};

index pattern depends on the channel .indexed field being set or not. If set, the
index will be taken from the .channel field in order to replace the {index}
pattern.
modifier pattern depends on the channel .modified field being set or not. If
set, the modifier will be taken from the .channel2 field, and the {modifier}
pattern will be replaced according to the char array struct
iio_modifier_names structure:

static const char * const iio_modifier_names[] = {

 [IIO_MOD_X] = "x",

 [IIO_MOD_Y] = "y",

 [IIO_MOD_Z] = "z",

 [IIO_MOD_X_AND_Y] = "x&y",

 [IIO_MOD_X_AND_Z] = "x&z",

 [IIO_MOD_Y_AND_Z] = "y&z",

 [...]

 [IIO_MOD_CO2] = "co2",

 [IIO_MOD_VOC] = "voc",

};

info_mask depends on the channel info mask, private or shared, indexing value
in the char array iio_chan_info_postfix:

/* relies on pairs of these shared then separate */

static const char * const iio_chan_info_postfix[] = {

 [IIO_CHAN_INFO_RAW] = "raw",

 [IIO_CHAN_INFO_PROCESSED] = "input",

 [IIO_CHAN_INFO_SCALE] = "scale",

 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",

 [...]

IIO Framework

[229]

 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",

 [IIO_CHAN_INFO_FREQUENCY] = "frequency",

 [...]

};

Distinguishing channels

You may find yourself in trouble when there are multiple data channels per channel type.
The dilemma would be: how to identify them. There are two solutions for that: indexes and
modifiers.

Using indexes: Given an ADC device with one channel line, indexation is not needed. Its
channel definition would be:

static const struct iio_chan_spec adc_channels[] = {

 {

 .type = IIO_VOLTAGE,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 },

}

The attribute name resulting from the preceding channel described will be
in_voltage_raw.

/sys/bus/iio/iio:deviceX/in_voltage_raw

Now let us say the converter has 4 or even 8 channels. How do we identify them? The
solution is to use indexes. Setting the .indexed field to 1 will mangle the channel attribute
name with the .channel value replacing the {index} pattern:

static const struct iio_chan_spec adc_channels[] = {

 {

 .type = IIO_VOLTAGE,

 .indexed = 1,

 .channel = 0,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 },

 {

 .type = IIO_VOLTAGE,

 .indexed = 1,

 .channel = 1,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 },

 {

 .type = IIO_VOLTAGE,

 .indexed = 1,

 .channel = 2,

IIO Framework

[230]

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 },

 {

 .type = IIO_VOLTAGE,

 .indexed = 1,

 .channel = 3,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 },

}

The resulting channel attributes are:

/sys/bus/iio/iio:deviceX/in_voltage0_raw

/sys/bus/iio/iio:deviceX/in_voltage1_raw

/sys/bus/iio/iio:deviceX/in_voltage2_raw

/sys/bus/iio/iio:deviceX/in_voltage3_raw

Using modifiers: Given a light sensor with two channels—one for infrared light and one for
both infrared and visible light, without index or modifier, an attribute name would be
in_intensity_raw. Using indexes here can be error-prone, because it makes no sense to
have in_intensity0_ir_raw, and in_intensity1_ir_raw. Using modifiers will help to
provide meaningful attribute names. The channel's definition could look like as follows:

static const struct iio_chan_spec mylight_channels[] = {

 {

 .type = IIO_INTENSITY,

 .modified = 1,

 .channel2 = IIO_MOD_LIGHT_IR,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),

 },

 {

 .type = IIO_INTENSITY,

 .modified = 1,

 .channel2 = IIO_MOD_LIGHT_BOTH,

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),

 },

 {

 .type = IIO_LIGHT,

 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),

 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),

 },

}

IIO Framework

[231]

Resulting attributes will be:

/sys/bus/iio/iio:deviceX/in_intensity_ir_raw for the channel
measuring IR intensity
/sys/bus/iio/iio:deviceX/in_intensity_both_raw for the channel
measuring both infrared and visible light
/sys/bus/iio/iio:deviceX/in_illuminance_input for the processed data
/sys/bus/iio/iio:deviceX/sampling_frequency for the sampling
frequency, shared by all

This is valid with accelerometer too, as we will see further on in the case study. For now,
let's summarize what we have discussed so far in a dummy IIO driver.

Putting it all together
Let us summarize what we have seen so far in a simple dummy driver, which will expose
four voltage channels. We will ignore read() or write() functions:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/platform_device.h>

#include <linux/interrupt.h>

#include <linux/of.h>

#include <linux/iio/iio.h>

#include <linux/iio/sysfs.h>

#include <linux/iio/events.h>

#include <linux/iio/buffer.h>

#define FAKE_VOLTAGE_CHANNEL(num) \

 { \

 .type = IIO_VOLTAGE, \

 .indexed = 1, \

 .channel = (num), \

 .address = (num), \

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \

 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) \

 }

struct my_private_data {

 int foo;

 int bar;

 struct mutex lock;

};

IIO Framework

[232]

static int fake_read_raw(struct iio_dev *indio_dev,

 struct iio_chan_spec const *channel, int *val,

 int *val2, long mask)

{

 return 0;

}

static int fake_write_raw(struct iio_dev *indio_dev,

 struct iio_chan_spec const *chan,

 int val, int val2, long mask)

{

 return 0;

}

static const struct iio_chan_spec fake_channels[] = {

 FAKE_VOLTAGE_CHANNEL(0),

 FAKE_VOLTAGE_CHANNEL(1),

 FAKE_VOLTAGE_CHANNEL(2),

 FAKE_VOLTAGE_CHANNEL(3),

};

static const struct of_device_id iio_dummy_ids[] = {

 { .compatible = "packt,iio-dummy-random", },

 { /* sentinel */ }

};

static const struct iio_info fake_iio_info = {

 .read_raw = fake_read_raw,

 .write_raw = fake_write_raw,

 .driver_module = THIS_MODULE,

};

static int my_pdrv_probe (struct platform_device *pdev)

{

 struct iio_dev *indio_dev;

 struct my_private_data *data;

 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));

 if (!indio_dev) {

 dev_err(&pdev->dev, "iio allocation failed!\n");

 return -ENOMEM;

 }

 data = iio_priv(indio_dev);

 mutex_init(&data->lock);

 indio_dev->dev.parent = &pdev->dev;

 indio_dev->info = &fake_iio_info;

 indio_dev->name = KBUILD_MODNAME;

IIO Framework

[233]

 indio_dev->modes = INDIO_DIRECT_MODE;

 indio_dev->channels = fake_channels;

 indio_dev->num_channels = ARRAY_SIZE(fake_channels);

 indio_dev->available_scan_masks = 0xF;

 iio_device_register(indio_dev);

 platform_set_drvdata(pdev, indio_dev);

 return 0;

}

static void my_pdrv_remove(struct platform_device *pdev)

{

 struct iio_dev *indio_dev = platform_get_drvdata(pdev);

 iio_device_unregister(indio_dev);

}

static struct platform_driver mypdrv = {

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = "iio-dummy-random",

 .of_match_table = of_match_ptr(iio_dummy_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

After loading the module above, we will have the following output, showing that our
device really corresponds to the platform device we have registered:

~# ls -l /sys/bus/iio/devices/
lrwxrwxrwx 1 root root 0 Jul 31 20:26 iio:device0 ->
../../../devices/platform/iio-dummy-random.0/iio:device0
lrwxrwxrwx 1 root root 0 Jul 31 20:23 iio_sysfs_trigger ->
../../../devices/iio_sysfs_trigger

The following listing shows the channels that this device has, along with its name, which
correspond exactly to what we have described in the driver:

~# ls /sys/bus/iio/devices/iio\:device0/
dev in_voltage2_raw name uevent
in_voltage0_raw in_voltage3_raw power
in_voltage1_raw in_voltage_scale subsystem
~# cat /sys/bus/iio/devices/iio:device0/name
iio_dummy_random

IIO Framework

[234]

Triggered buffer support
In many data analysis applications, it is useful to be able to capture data based on some
external signal (trigger). These triggers might be:

A data ready signal
An IRQ line connected to some external system (GPIO or something else)
On-processor periodic interrupt
User space reading/writing a specific file in sysfs

IIO device drivers are completely unrelated to triggers. A trigger may initialize data capture
on one or many devices. These triggers are used to fill buffers, exposed to user space as
character devices.

One can develop one's own trigger driver, but that is beyond the scope of this book. We will
try to focus on existing ones only. These are:

iio-trig-interrupt: This provides support for using any IRQ as IIO triggers.
In old kernel versions, it used to be iio-trig-gpio. The kernel option to enable
this trigger mode is CONFIG_IIO_INTERRUPT_TRIGGER. If built as a module, the
module would be called iio-trig-interrupt.
iio-trig-hrtimer: This provides a frequency-based IIO trigger using HRT as
the interrupt source (since kernel v4.5). In older kernel versions, it used to be
iio-trig-rtc. The kernel option responsible for this trigger mode is
IIO_HRTIMER_TRIGGER. If built as a module, the module would be called iio-
trig-hrtimer.
iio-trig-sysfs: This allow us to use sysfs entry to trigger data capture.
CONFIG_IIO_SYSFS_TRIGGER is the kernel option to add the support of this
trigger mode.
iio-trig-bfin-timer: This allows us to use a blackfin timer as IIO triggers
(still in staging).

IIO Framework

[235]

IIO exposes API so that we can:

Declare any given number of triggers
Choose which channels will have their data pushed into buffer

When your IIO device provides the support of the trigger buffer, you must set
iio_dev.pollfunc, which is executed when the trigger fires. This handler has the
responsibility to find enabled channels through indio_dev->active_scan_mask, retrieve
their data, and feed them into indio_dev->buffer using the
iio_push_to_buffers_with_timestamp function. As such, buffers and triggers are very
connected in the IIO subsystem.

The IIO core provides a set of helper functions to set up triggered buffers that one can find
in drivers/iio/industrialio-triggered-buffer.c.

The following are the steps to support triggered buffers from within your driver:

Fill an iio_buffer_setup_ops structure if needed:1.

const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {

 .preenable = my_sensor_buffer_preenable,

 .postenable = my_sensor_buffer_postenable,

 .postdisable = my_sensor_buffer_postdisable,

 .predisable = my_sensor_buffer_predisable,

};

Write the top half associated to the trigger. In 99% of cases, one has to just feed2.
the timestamp associated with the capture:

irqreturn_t sensor_iio_pollfunc(int irq, void *p)

{

 pf->timestamp = iio_get_time_ns((struct indio_dev *)p);

 return IRQ_WAKE_THREAD;

}

Write the trigger bottom half, which will fetch data from each enabled channel,3.
and feed them into the buffer:

irqreturn_t sensor_trigger_handler(int irq, void *p)

{

 u16 buf[8];

 int bit, i = 0;

 struct iio_poll_func *pf = p;

 struct iio_dev *indio_dev = pf->indio_dev;

IIO Framework

[236]

 /* one can use lock here to protect the buffer */

 /* mutex_lock(&my_mutex); */

 /* read data for each active channel */

 for_each_set_bit(bit, indio_dev->active_scan_mask,

 indio_dev->masklength)

 buf[i++] = sensor_get_data(bit)

 /*

 * If iio_dev.scan_timestamp = true, the capture timestamp

 * will be pushed and stored too, as the last element in the

 * sample data buffer before pushing it to the device buffers.

 */

 iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);

 /* Please unlock any lock */

 /* mutex_unlock(&my_mutex); */

 /* Notify trigger */

 iio_trigger_notify_done(indio_dev->trig);

 return IRQ_HANDLED;

}

Finally, in the probe function, one has to set up the buffer itself, prior to4.
registering the device with iio_device_register():

iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,

 sensor_trigger_handler,

 sensor_buffer_setup_ops);

The magic function here is iio_triggered_buffer_setup. This will also give the
INDIO_DIRECT_MODE capability to your device. When a trigger is given (from user space)
to your device, you have no way of knowing when capture will be fired.

While continuous buffered capture is active, one should prevent (by returning an error) the
driver from performing sysfs per-channel data capture (performed by the read_raw()
hook) in order to avoid undetermined behavior, since both the trigger handler and
read_raw() hook will try to access the device at the same time. The function used to check
whether buffered mode is actually used is iio_buffer_enabled(). The hook will look
like this:

static int my_read_raw(struct iio_dev *indio_dev,

 const struct iio_chan_spec *chan,

 int *val, int *val2, long mask)

{

 [...]

IIO Framework

[237]

 switch (mask) {

 case IIO_CHAN_INFO_RAW:

 if (iio_buffer_enabled(indio_dev))

 return -EBUSY;

 [...]

}

The iio_buffer_enabled() function simply tests if the buffer is enabled for a given IIO
device.

Let us describe some important things used in the preceding section:

iio_buffer_setup_ops provides buffer setup functions to be called at fixed
step of the buffer configuration sequence (before/after enable/disable). If not
specified, the default iio_triggered_buffer_setup_ops will be given to your
device by the IIO core.
sensor_iio_pollfunc is the trigger's top half. As with every top half, it runs in
interrupt context and must do as little processing as possible. In 99% of cases, you
just have to feed the timestamp associated with the capture. Once again, one can
use the default IIO iio_pollfunc_store_time function.
sensor_trigger_handler is the bottom half, which runs in a kernel thread,
allowing us to do any processing including even acquiring mutex or sleep. The
heavy processing should take place here. It usually reads data from the device
and stores it in the internal buffer together with the timestamp recorded in the
top half, and pushes it to your IIO device buffer.

A trigger is mandatory for triggered buffering. It tells the driver when to
read the sample from the device and put it into the buffer. Triggered
buffering is not mandatory to write IIO device drivers. One can use single
shot capture through sysfs too, by reading raw attributesof the channel,
which will only perform a single conversion (for the channel attribute
being read). Buffer mode allows continuous conversions, thus capturing
more than one channel in a single shot.

IIO Framework

[238]

IIO trigger and sysfs (user space)
There are two locations in sysfs related to triggers:

/sys/bus/iio/devices/triggerY/ which is created once an IIO trigger is
registered with the IIO core and corresponds to triggers with index Y. There is at
least one attribute in the directory:

name which is the trigger name that can be later used for
association with a device

/sys/bus/iio/devices/iio:deviceX/trigger/* directory will be
automatically created if your device supports a triggered buffer. One can
associate a trigger with our device by writing the trigger's name in the
current_trigger file.

Sysfs trigger interface
The sysfs trigger is enabled in the kernel by the CONFIG_IIO_SYSFS_TRIGGER=y config
option, which will result in the /sys/bus/iio/devices/iio_sysfs_trigger/ folder
being automatically created, and can be used for sysfs trigger management. There will be
two files in the directory, add_trigger and remove_trigger. Its driver is in
drivers/iio/trigger/iio-trig-sysfs.c.

add_trigger file

This is used to create a new sysfs trigger. You can create a new trigger by writing a positive
value (which will be used as a trigger ID) into that file. It will create the new sysfs trigger,
accessible at /sys/bus/iio/devices/triggerX, where X is the trigger number.

For example:

 # echo 2 > add_trigger

This will create a new sysfs trigger, accessible at /sys/bus/iio/devices/trigger2. If
the trigger with the specified ID is already present in the system, an invalid argument
message will be returned. The sysfs trigger name pattern is sysfstrig{ID}. The command
echo 2 > add_trigger will create the trigger /sys/bus/iio/devices/trigger2
whose name is sysfstrig2:

 $ cat /sys/bus/iio/devices/trigger2/name
 sysfstrig2

IIO Framework

[239]

Each sysfs trigger contains at least one file: trigger_now. Writing 1 into that file will
instruct all devices having the corresponding trigger name in their current_trigger to
start capture, and push data into their respective buffer. Each device buffer must have its
size set, and must be enabled (echo 1 >
/sys/bus/iio/devices/iio:deviceX/buffer/enable).

remove_trigger file

To remove a trigger, the following command is used:

 # echo 2 > remove_trigger

Tying a device with a trigger

Associating a device with a given trigger consists of writing the name of the trigger to the
current_trigger file available under the device's trigger directory. For example, let us
say we need to tie a device with the trigger that has index 2:

set trigger2 as current trigger for device0
echo sysfstrig2 >
/sys/bus/iio/devices/iio:device0/trigger/current_trigger

To detach the trigger from the device, one should write an empty string to the
current_trigger file of the device trigger directory, shown as follows:

echo "" > iio:device0/trigger/current_trigger

We will see further on in the chapter a practical example dealing with the sysfs trigger for
data capture.

The interrupt trigger interface
Consider the following sample:

static struct resource iio_irq_trigger_resources[] = {

 [0] = {

 .start = IRQ_NR_FOR_YOUR_IRQ,

 .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_LOWEDGE,

 },

};

static struct platform_device iio_irq_trigger = {

 .name = "iio_interrupt_trigger",

 .num_resources = ARRAY_SIZE(iio_irq_trigger_resources),

IIO Framework

[240]

 .resource = iio_irq_trigger_resources,

};

platform_device_register(&iio_irq_trigger);

Declare our IRQ trigger and it will result in the IRQ trigger standalone module being
loaded. If its probe function succeeds, there will be a directory corresponding to the trigger.
IRQ trigger names have the form irqtrigX, where X corresponds to the virtual IRQ you
just passed, the one you will see in /proc/interrupt:

 $ cd /sys/bus/iio/devices/trigger0/
 $ cat name

irqtrig85: As we have done with other triggers, you just have to assign that trigger to
your device, by writing its name into your device current_trigger file.

echo "irqtrig85" >
/sys/bus/iio/devices/iio:device0/trigger/current_trigger

Now, every time the interrupt will be fired, device data will be captured.

The IRQ trigger driver does not support DT yet, which is the reason why
we used our board init file. But it does not matter; since the driver
requires a resource, we can use DT without any code change.

The following is an example of device tree node declaring the IRQ trigger interface:

mylabel: my_trigger@0{

 compatible = "iio_interrupt_trigger";

 interrupt-parent = <&gpio4>;

 interrupts = <30 0x0>;

};

The example supposes the IRQ line is the GPIO#30 that belongs to the GPIO controller node
gpio4. This consists of using a GPIO as an interrupt source, so that whenever the GPIO
changes to a given state, the interrupt is raised, thus triggering the capture.

The hrtimer trigger interface
The hrtimer trigger relies on the configfs file system (see Documentation/iio/iio_configfs.txt
in kernel sources), which can be enabled through the CONFIG_IIO_CONFIGFS config
option, and mounted on our system (usually under the /config directory):

 # mkdir /config
 # mount -t configfs none /config

IIO Framework

[241]

Now, loading the module iio-trig-hrtimer will create IIO groups accessible under
/config/iio, allowing users to create hrtimer triggers under
/config/iio/triggers/hrtimer.

For example:

 # create a hrtimer trigger
 $ mkdir /config/iio/triggers/hrtimer/my_trigger_name
 # remove the trigger
 $ rmdir /config/iio/triggers/hrtimer/my_trigger_name

Each hrtimer trigger contains a single sampling_frequency attribute in the trigger
directory. A full and working example is provided further in the chapter in the section Data
capture using hrtimer trigger.

IIO buffers
The IIO buffer offers continuous data capture, where more than one data channel can be
read at once. The buffer is accessible from the user space through the /dev/iio:device
character device node. From within the trigger handler, the function used to fill the buffer is
iio_push_to_buffers_with_timestamp. The function responsible to allocate the trigger
buffer for your device is iio_triggered_buffer_setup().

IIO buffer sysfs interface
An IIO buffer has an associated attributes directory under
/sys/bus/iio/iio:deviceX/buffer/*. Here are some of the existing attributes:

length: The total number of data samples (capacity) that can be stored by the
buffer. This is the number of scans contained by the buffer.
enable: This activates buffer capture, start the buffer capture.
watermark: This attribute has been available since kernel version v4.2. It is a
positive number which specifies how many scan elements a blocking read should
wait for. If using poll for example, it will block until the watermark is reached. It
makes sense only if the watermark is greater than the requested amount of reads.
It does not affect non-blocking reads. One can block on poll with a timeout and
read the available samples after the timeout expires, and thus have a maximum
delay guarantee.

IIO Framework

[242]

IIO buffer setup
A channel whose data is to be read and pushed into the buffer is called a scan element.
Their configurations are accessible from the user space through the
/sys/bus/iio/iio:deviceX/scan_elements/* directory, containing the following
attributes:

en (actually a suffix for attribute name), is used to enable the channel. If and only
if its attribute is non-zero, then a triggered capture will contain data samples for
this channel. For example, in_voltage0_en, in_voltage1_en and so on.
type describes the scan element data storage within the buffer, and hence the
form in which it is read from user space. For example, in_voltage0_type. The
format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift].

be or le specifies the endianness (big or little).
s or u specifies the sign, either signed (2's complement) or
unsigned.
bits is the number of valid data bits.
storagebits is the number of bits this channel occupies in the
buffer. That said, a value may be really coded in 12 bits (bits), but
occupies 16 bits (storagebits) in the buffer. One must therefore shift
the data four times to the right to obtain the actual value. This
parameter depends on the device, and one should refer to its data
sheet.
shift represents the number of times one should shift the data
value prior to masking out unused bits. This parameter is not
always needed. If the number of valid bit (bits) is equal to the
number of storage bits, the shift will be 0. One can also find this
parameter in the device data sheet.
repeat specifies the number of bit/storagebit repetitions. When the
repeat element is 0 or 1, then the repeat value is omitted.

IIO Framework

[243]

The best way to explain this section is by an excerpt of kernel doc, which can find here:
https://www.kernel.org/doc/html/latest/driver-api/iio/buffers.html. For example,
a driver for a 3-axis accelerometer, with 12-bit resolution where data is stored in two 8-bit
registers, is as follows:

 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+

 |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)

 +---+---+---+---+---+---+---+---+

 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+

 |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)

 +---+---+---+---+---+---+---+---+

will have the following scan element type for each axis:

 $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
 le:s12/16>>4

One should interpret this as being little endian-signed data, 16 bits-sized, which needs to be
shifted right by 4 bits before masking out the 12 valid bits of data.

The element in struct iio_chan_spec that is responsible for determining how a
channel's value should be stored into the buffer is scant_type.

struct iio_chan_spec {

 [...]

 struct {

 char sign; /* Should be 'u' or 's' as explained above */

 u8 realbits;

 u8 storagebits;

 u8 shift;

 u8 repeat;

 enum iio_endian endianness;

 } scan_type;

 [...]

};

https://www.kernel.org/doc/html/latest/driver-api/iio/buffers.html

IIO Framework

[244]

This structure absolutely matches
[be|le]:[s|u]bits/storagebitsXrepeat[>>shift], which is the pattern described in
the previous section. Let us have a look at each member of the structure:

sign represents the sign of the data and matches [s|u] in the pattern
realbits corresponds to bits in the pattern
storagebits matches the same name in the pattern
shift corresponds to shift in the pattern, same for repeat
iio_indian represents the endianness and matches [be|le] in the pattern

At this point, one is able to write the IIO channel structure that corresponds to the type
previously explained:

struct struct iio_chan_spec accel_channels[] = {

 {

 .type = IIO_ACCEL,

 .modified = 1,

 .channel2 = IIO_MOD_X,

 /* other stuff here */

 .scan_index = 0,

 .scan_type = {

 .sign = 's',

 .realbits = 12,

 .storagebits = 16,

 .shift = 4,

 .endianness = IIO_LE,

 },

 }

 /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)

 * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis

 */

}

Putting it all together
Let us have a closer look at the digital triaxial acceleration sensor BMA220 from BOSH. This
is an SPI/I2C-compatible device, with 8 bit-sized registers, along with an on-chip motion-
triggered interrupt controller, which actually senses tilt, motion, and shock vibration. Its
data sheet is available at: http://www.mouser.fr/pdfdocs/BSTBMA220DS00308.PDF, and its
driver has been introduced since kernel v4.8 (CONFIG_BMA200). Let us walk through it:

http://www.mouser.fr/pdfdocs/BSTBMA220DS00308.PDF

IIO Framework

[245]

Firstly, we declare our IIO channels using struct iio_chan_spec. Once the triggered
buffer is used, then we need to fill the .scan_index and .scan_type fields:

#define BMA220_DATA_SHIFT 2

#define BMA220_DEVICE_NAME "bma220"

#define BMA220_SCALE_AVAILABLE "0.623 1.248 2.491 4.983"

#define BMA220_ACCEL_CHANNEL(index, reg, axis) { \

 .type = IIO_ACCEL, \

 .address = reg, \

 .modified = 1, \

 .channel2 = IIO_MOD_##axis, \

 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \

 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \

 .scan_index = index, \

 .scan_type = { \

 .sign = 's', \

 .realbits = 6, \

 .storagebits = 8, \

 .shift = BMA220_DATA_SHIFT, \

 .endianness = IIO_CPU, \

 }, \

}

static const struct iio_chan_spec bma220_channels[] = {

 BMA220_ACCEL_CHANNEL(0, BMA220_REG_ACCEL_X, X),

 BMA220_ACCEL_CHANNEL(1, BMA220_REG_ACCEL_Y, Y),

 BMA220_ACCEL_CHANNEL(2, BMA220_REG_ACCEL_Z, Z),

};

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) says there will be a *_raw sysfs
entry (attribute) for each channel, and .info_mask_shared_by_type =
BIT(IIO_CHAN_INFO_SCALE) says that there is only a *_scale sysfs entry for all channels
of the same type:

 jma@jma:~$ ls -l /sys/bus/iio/devices/iio:device0/

(...)
without modifier, a channel name would have in_accel_raw (bad)
-rw-r--r-- 1 root root 4096 jul 20 14:13 in_accel_scale
-rw-r--r-- 1 root root 4096 jul 20 14:13 in_accel_x_raw
-rw-r--r-- 1 root root 4096 jul 20 14:13 in_accel_y_raw
-rw-r--r-- 1 root root 4096 jul 20 14:13 in_accel_z_raw

(...)

IIO Framework

[246]

Reading in_accel_scale calls the read_raw() hook with the mask set to
IIO_CHAN_INFO_SCALE. Reading in_accel_x_raw calls the read_raw() hook with the
mask set to IIO_CHAN_INFO_RAW. The real value is therefore raw_value * scale.

What .scan_type says is that the value returned by each channel is, 8 bit-sized (will
occupy 8 bits in the buffer), but the useful payload only occupies 6 bits, and the data must
be right-shifted 2 times prior to masking out unused bits. Any scan element type will look
like this:

$ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_x_type
le:s6/8>>2

The following is our pollfunc (actually it is the bottom half), which reads samples from
the device and pushes read values into the buffer
(iio_push_to_buffers_with_timestamp()). Once done, we inform the core
(iio_trigger_notify_done()):

static irqreturn_t bma220_trigger_handler(int irq, void *p)

{

 int ret;

 struct iio_poll_func *pf = p;

 struct iio_dev *indio_dev = pf->indio_dev;

 struct bma220_data *data = iio_priv(indio_dev);

 struct spi_device *spi = data->spi_device;

 mutex_lock(&data->lock);

 data->tx_buf[0] = BMA220_REG_ACCEL_X | BMA220_READ_MASK;

 ret = spi_write_then_read(spi, data->tx_buf, 1, data->buffer,

 ARRAY_SIZE(bma220_channels) - 1);

 if (ret < 0)

 goto err;

 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,

 pf->timestamp);

err:

 mutex_unlock(&data->lock);

 iio_trigger_notify_done(indio_dev->trig);

 return IRQ_HANDLED;

}

IIO Framework

[247]

The following is the read function. It is a hook, called every time one reads a sysfs entry of
the device:

static int bma220_read_raw(struct iio_dev *indio_dev,

 struct iio_chan_spec const *chan,

 int *val, int *val2, long mask)

{

 int ret;

 u8 range_idx;

 struct bma220_data *data = iio_priv(indio_dev);

 switch (mask) {

 case IIO_CHAN_INFO_RAW:

 /* If buffer mode enabled, do not process single-channel read */

 if (iio_buffer_enabled(indio_dev))

 return -EBUSY;

 /* Else we read the channel */

 ret = bma220_read_reg(data->spi_device, chan->address);

 if (ret < 0)

 return -EINVAL;

 *val = sign_extend32(ret >> BMA220_DATA_SHIFT, 5);

 return IIO_VAL_INT;

 case IIO_CHAN_INFO_SCALE:

 ret = bma220_read_reg(data->spi_device, BMA220_REG_RANGE);

 if (ret < 0)

 return ret;

 range_idx = ret & BMA220_RANGE_MASK;

 *val = bma220_scale_table[range_idx][0];

 *val2 = bma220_scale_table[range_idx][1];

 return IIO_VAL_INT_PLUS_MICRO;

 }

 return -EINVAL;

}

When one reads a *raw sysfs file, the hook is called, given IIO_CHAN_INFO_RAW in the
mask parameter, and the corresponding channel in the *chan parameter. *val and val2
are actually output parameters. They must be set with the raw value (read from the device).
Any read performed on the *scale sysfs file will call the hook with
IIO_CHAN_INFO_SCALE in mask parameter, and so on for each attribute mask.

IIO Framework

[248]

This is also the case with the write function, used to write value into the device. There is an
80% chance your driver does not require a write function. This write hook lets the user
change the device's scale:

static int bma220_write_raw(struct iio_dev *indio_dev,

 struct iio_chan_spec const *chan,

 int val, int val2, long mask)

{

 int i;

 int ret;

 int index = -1;

 struct bma220_data *data = iio_priv(indio_dev);

 switch (mask) {

 case IIO_CHAN_INFO_SCALE:

 for (i = 0; i < ARRAY_SIZE(bma220_scale_table); i++)

 if (val == bma220_scale_table[i][0] &&

 val2 == bma220_scale_table[i][1]) {

 index = i;

 break;

 }

 if (index < 0)

 return -EINVAL;

 mutex_lock(&data->lock);

 data->tx_buf[0] = BMA220_REG_RANGE;

 data->tx_buf[1] = index;

 ret = spi_write(data->spi_device, data->tx_buf,

 sizeof(data->tx_buf));

 if (ret < 0)

 dev_err(&data->spi_device->dev,

 "failed to set measurement range\n");

 mutex_unlock(&data->lock);

 return 0;

 }

 return -EINVAL;

}

IIO Framework

[249]

This function is called whenever one writes a value to the device. Frequently changed
parameters are the scale. An example could be: echo <desired-scale> >
/sys/bus/iio/devices/iio;devices0/in_accel_scale.

Now, it comes to fill a struct iio_info structure, to be given to our iio_device:

static const struct iio_info bma220_info = {

 .driver_module = THIS_MODULE,

 .read_raw = bma220_read_raw,

 .write_raw = bma220_write_raw, /* Only if your driver need it */

};

In the probe function, we allocate and set up a struct iio_dev IIO device. Memory for
private data is reserved too:

/*

 * We provide only two mask possibility, allowing to select none or every

 * channels.

 */

static const unsigned long bma220_accel_scan_masks[] = {

 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),

 0

};

static int bma220_probe(struct spi_device *spi)

{

 int ret;

 struct iio_dev *indio_dev;

 struct bma220_data *data;

 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*data));

 if (!indio_dev) {

 dev_err(&spi->dev, "iio allocation failed!\n");

 return -ENOMEM;

 }

 data = iio_priv(indio_dev);

 data->spi_device = spi;

 spi_set_drvdata(spi, indio_dev);

 mutex_init(&data->lock);

 indio_dev->dev.parent = &spi->dev;

 indio_dev->info = &bma220_info;

 indio_dev->name = BMA220_DEVICE_NAME;

 indio_dev->modes = INDIO_DIRECT_MODE;

 indio_dev->channels = bma220_channels;

 indio_dev->num_channels = ARRAY_SIZE(bma220_channels);

IIO Framework

[250]

 indio_dev->available_scan_masks = bma220_accel_scan_masks;

 ret = bma220_init(data->spi_device);

 if (ret < 0)

 return ret;

 /* this call will enable trigger buffer support for the device */

 ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,

 bma220_trigger_handler, NULL);

 if (ret < 0) {

 dev_err(&spi->dev, "iio triggered buffer setup failed\n");

 goto err_suspend;

 }

 ret = iio_device_register(indio_dev);

 if (ret < 0) {

 dev_err(&spi->dev, "iio_device_register failed\n");

 iio_triggered_buffer_cleanup(indio_dev);

 goto err_suspend;

 }

 return 0;

err_suspend:

 return bma220_deinit(spi);

}

One can enable this driver by means of the CONFIG_BMA220 kernel option. That said, this is
available only from v4.8 onwards in kernel. The closest device one can use for this on older
kernel versions is BMA180, which one can enable using the CONFIG_BMA180 option.

IIO data access
You may have guessed that there are only two ways to access data with the IIO framework;
one-shot capture through sysfs channels, or continuous mode (triggered buffer) through an
IIO character device.

IIO Framework

[251]

One-shot capture
One-shot data capture is done through sysfs interface. By reading the sysfs entry that
corresponds to a channel, you'll capture only the data specific to that channel. Given a temp
sensor with two channels: one for the ambient temp, and the other for the thermocouple
temp:

 # cd /sys/bus/iio/devices/iio:device0
 # cat in_voltage3_raw
 6646

 # cat in_voltage_scale
 0.305175781

Processed value is obtained by multiplying the scale by the raw value.

Voltage value: 6646 * 0.305175781 = 2028.19824053

The device datasheet says the process value is given in MV. In our case, it corresponds to
2.02819V.

Buffer data access
To get a triggered acquisition working, the trigger support must have been implemented in
your driver. Then, to acquire data from within user space, one must: create a trigger, assign
it, enable the ADC channels, set the dimension of the buffer, and enable it). Here is the code
for this:

Capturing using the sysfs trigger
Capturing data using the sysfs trigger consists of sending a set of command few sysfs files.
Let us enumerate what we should do to achieve that:

Create the trigger: Before the trigger can be assigned to any device, it should be1.
created:

 # echo 0 > /sys/devices/iio_sysfs_trigger/add_trigger

IIO Framework

[252]

Here, 0 corresponds to the index we need to assign to the trigger. After this command, the
trigger directory will be available under /sys/bus/iio/devices/, as trigger0.

Assign the trigger to the device: A trigger is uniquely identified by its name,2.
which we can use in order to tie device to the trigger. Since we used 0 as index,
the trigger will be named sysfstrig0:

echo sysfstrig0 >
/sys/bus/iio/devices/iio:device0/trigger/current_trigger

We could have used this command too: cat /sys/bus/iio/devices/trigger0/name >
/sys/bus/iio/devices/iio:device0/trigger/current_trigger. That said, if the
value we wrote does not correspond to an existing trigger name, nothing will happen. To
make sure we really defined a trigger, we can use cat
/sys/bus/iio/devices/iio:device0/trigger/current_trigger.

Enable some scan elements: This step consists of choosing which channels3.
should have their data value pushed into the buffer. One should pay attention to
available_scan_masks in the driver:

 # echo 1 >
/sys/bus/iio/devices/iio:device0/scan_elements/in_voltage4_en
 # echo 1 >
/sys/bus/iio/devices/iio:device0/scan_elements/in_voltage5_en
 # echo 1 >
/sys/bus/iio/devices/iio:device0/scan_elements/in_voltage6_en
 # echo 1 >
/sys/bus/iio/devices/iio:device0/scan_elements/in_voltage7_en

Setup the buffer size: Here one should set the number of sample sets that may be4.
held by the buffer:

 # echo 100 > /sys/bus/iio/devices/iio:device0/buffer/length

Enable the buffer: This step consists of marking the buffer as being ready to5.
receive pushed data:

 # echo 1 > /sys/bus/iio/devices/iio:device0/buffer/enable

IIO Framework

[253]

To stop the capture, we'll have to write 0 in the same file.

Fire the trigger: Launch acquisition:6.

 # echo 1 > /sys/bus/iio/devices/trigger0/trigger_now

Now acquisition is done, we can:

Disable the buffer:7.

 # echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Detach the trigger:8.

 # echo "" >
/sys/bus/iio/devices/iio:device0/trigger/current_trigger

Dump the content of our IIO character device:9.

 # cat /dev/iio\:device0 | xxd -

Capturing using the hrtimer trigger
The following is the set of commands that allow to capture data using hrtimer trigger:

 # echo /sys/kernel/config/iio/triggers/hrtimer/trigger0
 # echo 50 > /sys/bus/iio/devices/trigger0/sampling_frequency
 # echo 1 > /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage4_en
 # echo 1 > /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage5_en
 # echo 1 > /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage6_en
 # echo 1 > /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage7_en
 # echo 1 > /sys/bus/iio/devices/iio:device0/buffer/enable
 # cat /dev/iio:device0 | xxd -

 0000000: 0188 1a30 0000 0000 8312 68a8 c24f 5a14 ...0......h..OZ.
 0000010: 0188 1a30 0000 0000 192d 98a9 c24f 5a14 ...0.....-...OZ.
 [...]

And, we look at the type to figure out how to process data:

$ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_voltage_type
be:s14/16>>2

Voltage processing: 0x188 >> 2 = 98 * 250 = 24500 = 24.5 v

IIO Framework

[254]

IIO tools
There are some useful tools you can use in order to ease and speed up your app's
development with IIO devices. They are available in tools/iio in the kernel tree:

lsiio.c: To enumerate IIO triggers, devices, and channels
iio_event_monitor.c: Monitor an IIO device's ioctl interface for IIO events
generic_buffer.c: To retrieve, process, and print data received from an IIO
device's buffer
libiio: A powerful library developed by analog device to interface IIO devices,
and available at https://github.com/analogdevicesinc/libiio.

Summary
By the end of this chapter, you should now be familiar with IIO framework and vocabulary.
You know what channels, device, and triggers are. You can even play with your IIO device
from the user space, through sysfs or character device. The time to write your own IIO
driver has come. There are a lot of available existing drivers not supporting trigger buffers.
You can try to add such features in one of them. In the next chapter, we will play with the
most useful/used resource on a system: the memory. Be strong, the game has just started.

https://github.com/analogdevicesinc/libiio

11
Kernel Memory Management

On Linux systems, every memory address is virtual. They do not point to any address in the
RAM directly. Whenever one accesses a memory location, a translation mechanism is
performed in order to match the corresponding physical memory.

Let us start with a short story to introduce the virtual memory concept. Given a hotel, there
can be a phone in each room, having a private number. Any installed phone, of course
belongs to the hotel. None of them can be joined directly from outside the hotel.

If you need to contact an occupant of a room, let us say your friend, he must have given you
the hotel's switchboard number and the room number in which he stays. Once you call the
switchboard and give the room number of the occupant you need to talk to, just at this
moment, the receptionist redirects your call to the real private phone of the room. Only the
receptionist and the room occupant know the private number mapping:

(switchboard number + room number) <=> private (real) phone number

Kernel Memory Management

[256]

Every time someone in the city (or over the world) wants to contact a room occupant, he has
to pass by the hotline. He needs to know the right hotline number of the hotel, and the room
number. This way, switchboard number + room number = virtual address, whereas
private phone number corresponds to the physical address. There are some rules related
to hotels that apply on Linux as well:

Hotel Linux

You cannot contact an occupant who has no
private phone in the room. There is not even a
way to attempt to do this. Your call will be
ended suddenly.

You cannot access a non-existing
memory in your address space. This will
cause a segmentation fault.

You cannot contact an occupant who does not
exist, or whose check-in the hotel is not aware
of, or whose information is not found by the
switchboard.

If you access unmapped memory, the
CPU raises a page fault and the OS
handles it.

You can't contact an occupant whose stay is
over.

You cannot access freed memory. Maybe
it has been allocated to another process

Many hotels may have the same brand, but
located at different places, each of them having
a different hotline number. If you make a
mistake with the hotline number.

Different processes may have the same
virtual addresses mapped in their
address space, but pointing to another
different physical addresses.

There is a book (or software with a database)
holding the mapping between the room
number and the private phone number, and
consulted by the receptionist on demand.

Virtual addresses are mapped to the
physical memory by page tables, which
are maintained by the operating system
kernel and consulted by the processor.

That is how one can imagine the virtual addresses work on a Linux system.

In this chapter, we will deal with the whole Linux memory management system covering
following topics:

Memory layout along with address translation and MMU
Memory allocation mechanisms (page allocator, slab allocator, kmalloc allocator,
and so on)
I/O memory access
Mapping kernel memory to user space and implementing mmap() callback
function

Kernel Memory Management

[257]

Introducing Linux caching system
Introducing the device managed resource framework (devres)

System memory layout - kernel space and
user space
Throughout this chapter, terms such as kernel space and user space will refer to their virtual
address space. On Linux systems, each process owns a virtual address space. It is a kind of
memory sandbox during the process life. That address space is 4 GB in size on 32-bits
systems (even on a system with physical memory less than 4 GB). For each process, that 4
GB address space is split in two parts:

User space virtual addresses
Kernel space virtual addresses

The way the split is done depends on a special kernel configuration option,
CONFIG_PAGE_OFFSET, which defines where the kernel addresses section starts in a process
address space. The common value is 0xC0000000 by default on 32-bit systems, but this may
be changed, as it is the case for i.MX6 family processors from NXP, which uses
0x80000000. In the whole chapter, we will consider 0xC0000000 by default. This is called
3G/1G split, where the user space is given the lower 3 GB of virtual address space, and the
kernel uses the upper remaining 1 GB. A typical process's virtual address space layout looks
like:

 .------------------------. 0xFFFFFFFF

 | | (4 GB)

 | Kernel addresses |

 | |

 | |

 .------------------------.CONFIG_PAGE_OFFSET

 | |(x86: 0xC0000000, ARM: 0x80000000)

 | |

 | |

 | User space addresses |

 | |

 | |

 | |

 | |

 '------------------------' 00000000

Kernel Memory Management

[258]

Both addresses used in the kernel and the user space are virtual addresses. The difference is
that accessing a kernel address needs a privileged mode. Privileged mode has extended
privileges. When the CPU runs the user space side code, the active process is said to be
running in the user mode; when the CPU runs the kernel space side code, the active process
is said to be running in the kernel mode.

Given an address (virtual of course), one can distinguish whether it is a
kernel space or a user space address by using process layout shown above.
Every address falling into 0-3 GB, comes from the user space; otherwise, it
is from the kernel.

There is a reason why the kernel shares its address space with every process: because every
single process at a given moment uses system calls, which will involve the kernel. Mapping
the kernel's virtual memory address into each process's virtual address space allow us to
avoid the cost of switching out the memory address space on each entry to (and exit from)
the kernel. It is the reason why the kernel address space is permanently mapped on top of
each process in order to speed up kernel access through system calls.

The memory management unit organizes memory into units of fixed size called pages. A
page consists of 4,096 bytes (4 KB). Even if this size may differ on other systems, it is fixed
on ARM and x86, which are architectures we are interested in:

A memory page, virtual page, or simply page are terms one uses to refer to a
fixed-length contiguous block of virtual memory. The same name page is used as
a kernel data structure to represent a memory page.
On the other hand, a frame (or page frame) refers to a fixed-length contiguous
block of physical memory on top of which the operating system maps a memory
page. Each page frame is given a number, called page frame number (PFN).
Given a page, one can easily get its PFN and vice versa, using the page_to_pfn
and pfn_to_page macros, which will be discussed in detail in the next sections.
A page table is the kernel and architecture data structure used to store the
mapping between virtual addresses and physical addresses. The key pair
page/frame describes a single entry in the page table. This represents a mapping.

Kernel Memory Management

[259]

Since a memory page is mapped to a page frame, it goes without saying that pages and
page frames have the same sizes, 4 K in our case. The size of a page is defined in the kernel
through the PAGE_SIZE macro.

There are situations where one needs memory to be page-aligned. One
says a memory is page-aligned if its address starts exactly at the beginning
of a page. For example, on a 4 K page size system, 4,096, 20,480, and
409,600 are instances of page-aligned memory addresses. In other words,
any memory whose address is a multiple of the system page size is said to
be page-aligned.

Kernel addresses – concept of low and high
memory
The Linux kernel has its own virtual address space as every user mode process does. The
virtual address space of the kernel (1 GB sized in 3G/1G split) is divided into two parts:

Low memory or LOWMEM, which is the first 896 MB
High Memory or HIGHMEM, represented by the top 128 MB

 Physical mem

 Process address space +------> +------------+

 | | 3200 M |

 | | |

 4 GB +---------------+ <-----+ | HIGH MEM |

 | 128 MB | | |

 +---------------+ <---------+ | |

 +---------------+ <------+ | | |

 | 896 MB | | +--> +------------+

 3 GB +---------------+ <--+ +-----> +------------+

 | | | | 896 MB | LOW MEM

 | ///// | +---------> +------------+

 | |

 0 GB +---------------+

Kernel Memory Management

[260]

Low memory
The first 896 MB of kernel address space constitutes the low memory region. Early at boot,
the kernel permanently maps those 896 MB. Addresses that result from that mapping are
called logical addresses. These are virtual addresses, but can be translated into physical
addresses by subtracting a fixed offset, since the mapping is permanent and known in
advance. Low memory match with lower bound of physical addresses. One could define
low memory as being the memory for which logical addresses exist in the kernel space.
Most of the kernel memory function returns low memory. In fact, to serve different
purposes, kernel memory is divided into a zone. Actually, the first 16 MB of LOWMEM is
reserved for DMA usage. Because of hardware limitations, the kernel cannot treat all pages
as identical. We can then identify three different memory zones in the kernel space:

ZONE_DMA: This contains page frames of memory below 16 MB, reserved for
Direct Memory Access (DMA)
ZONE_NORMAL: This contains page frames of memory above 16 MB and below 896
MB, for normal use
ZONE_HIGHMEM: This contains page frames of memory at and above 896 MB

That says on a 512 MB system, there will be no ZONE_HIGHMEM, 16 MB for ZONE_DMA, and
496 MB for ZONE_NORMAL.

Another definition of logical addresses: addresses in kernel space, mapped
linearly on physical addresses, which can be converted into physical
addresses just with an offset, or applying a bitmask. One can convert a
physical address into a logical address using the __pa(address) macro,
and then revert with the __va(address) macro.

High memory
The top 128 MB of the kernel address space is called the high memory region. It is used by
the kernel to temporarily map physical memory above 1 G. When physical memory above 1
GB (or more precisely, 896 MB), needs to be accessed, the kernel uses those 128 MB to create
temporary mapping to its virtual address space, thus achieving the goal of being able to
access all physical pages. One could define high memory as being memory for which logical
addresses do not exist, and which is not mapped permanently into kernel address space.
The physical memory above 896 MB is mapped on demand to the 128 MB of the
HIGHMEM region.

Kernel Memory Management

[261]

Mapping to access high memory is created on the fly by the kernel, and destroyed when
done. This makes high memory access slower. That said, the concept of high memory does
not exist on the 64-bits systems, due to the huge address range (264), where the 3G/1G split
does not make sense anymore.

User space addresses
In this section, we will deal with the user space by means of processes. Each process is
represented in the kernel as an instance of struct task_struct (see
include/linux/sched.h), which characterizes and describes a process. Each process is
given a table of memory mapping, stored in a variable of type struct mm_struct (see
include/linux/mm_types.h). You can then guess that there is at least one mm_struct
field embedded in each task_struct. The following line is the part of struct task_struct
definition that we are interested in:

struct task_struct{

 [...]

 struct mm_struct *mm, *active_mm;

 [...]

}

The kernel global variable current, points to the current process. The field *mm, points to
its memory mapping table. By definition, current->mm points to the current process
memory mappings table.

Now let us see what a struct mm_struct looks like:

struct mm_struct {

 struct vm_area_struct *mmap;

 struct rb_root mm_rb;

 unsigned long mmap_base;

 unsigned long task_size;

 unsigned long highest_vm_end;

 pgd_t * pgd;

 atomic_t mm_users;

 atomic_t mm_count;

 atomic_long_t nr_ptes;

#if CONFIG_PGTABLE_LEVELS > 2

 atomic_long_t nr_pmds;

#endif

 int map_count;

 spinlock_t page_table_lock;

 struct rw_semaphore mmap_sem;

 unsigned long hiwater_rss;

Kernel Memory Management

[262]

 unsigned long hiwater_vm;

 unsigned long total_vm;

 unsigned long locked_vm;

 unsigned long pinned_vm;

 unsigned long data_vm;

 unsigned long exec_vm;

 unsigned long stack_vm;

 unsigned long def_flags;

 unsigned long start_code, end_code, start_data, end_data;

 unsigned long start_brk, brk, start_stack;

 unsigned long arg_start, arg_end, env_start, env_end;

 /* Architecture-specific MM context */

 mm_context_t context;

 unsigned long flags;

 struct core_state *core_state;

#ifdef CONFIG_MEMCG

 /*

 * "owner" points to a task that is regarded as the canonical

 * user/owner of this mm. All of the following must be true in

 * order for it to be changed:

 *

 * current == mm->owner

 * current->mm != mm

 * new_owner->mm == mm

 * new_owner->alloc_lock is held

 */

 struct task_struct __rcu *owner;

#endif

 struct user_namespace *user_ns;

 /* store ref to file /proc/<pid>/exe symlink points to */

 struct file __rcu *exe_file;

};

I intentionally removed some fields we are not interested in. There are some fields we will
talk about later: pgd for example, which is a pointer to the process's base (first entry) level 1
table (PGD), written in the translation table base address of the CPU at context switching.
Anyway, before going further, let us see the representation of a process address space:

Kernel Memory Management

[263]

Process memory layout

From the process point of view, a memory mapping can be seen as nothing but a set of page
table entries dedicated to a consecutive virtual address range. That consecutive virtual address
range is called memory area, or virtual memory area (VMA). Each memory mapping is
described by a start address and length, permissions (such as whether the program can
read, write, or execute from that memory), and associated resources (such as physical
pages, swap pages, file contents, and so on).

A mm_struct has two ways to store process regions (VMA):

In a red-black tree, whose root element is pointed by the field1.
mm_struct->mm_rb.
In a linked list, where the first element is pointed by the field mm_struct->mmap.2.

Kernel Memory Management

[264]

Virtual Memory Area (VMA)
The kernel uses virtual memory areas to keep track of the processes memory mappings, for
example, a process having one VMA for its code, one VMA for each type of data, one VMA
for each distinct memory mapping (if any), and so on. VMAs are processor-independent
structures, with permissions and access control flags. Each VMA has a start address, a
length, and their sizes are always a multiple of page size (PAGE_SIZE). A VMA consists of a
number of pages, each of which has an entry in the page table.

Memory regions described by VMA are always virtually contiguous, not
physically. One can check all VMAs associated with a process through the
/proc/<pid>/maps file, or using the pmap command on a process ID.

Image source: http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/

Kernel Memory Management

[265]

cat /proc/1073/maps
00400000-00403000 r-xp 00000000 b3:04 6438 /usr/sbin/net-listener
00602000-00603000 rw-p 00002000 b3:04 6438 /usr/sbin/net-listener
00603000-00624000 rw-p 00000000 00:00 0 [heap]
7f0eebe4d000-7f0eebe54000 r-xp 00000000 b3:04 11717
/usr/lib/libffi.so.6.0.4
7f0eebe54000-7f0eec054000 ---p 00007000 b3:04 11717
/usr/lib/libffi.so.6.0.4
7f0eec054000-7f0eec055000 rw-p 00007000 b3:04 11717
/usr/lib/libffi.so.6.0.4
7f0eec055000-7f0eec069000 r-xp 00000000 b3:04 21629 /lib/libresolv-2.22.so
7f0eec069000-7f0eec268000 ---p 00014000 b3:04 21629 /lib/libresolv-2.22.so
[...]
7f0eee1e7000-7f0eee1e8000 rw-s 00000000 00:12 12532 /dev/shm/sem.thk-
mcp-231016-sema
[...]

Each line in the preceding excerpt represents a VMA, and fields map the following pattern:
{address (start-end)} {permissions} {offset} {device (major:minor)}

{inode} {pathname (image)}:

address: This represents the starting and ending address of the VMA.
permissions: This describes access right of the region: r (read), w (write), and x
(execute), including p (if the mapping is private) and s (for shared mapping).
Offset: In the case of file mapping (mmap system call), it is the offset in the file
where the mapping takes place. It is 0 otherwise.
major:minor: In case of file mapping, these represent the major and minor
number of the devices in which the file is stored (device holding the file).
inode: In the case of mapping from a file, the inode number of the mapped file.
pathname: This is the name of the mapped file, or left blank otherwise. There are
other region name such as [heap], [stack], or [vdso], which stands for virtual
dynamic shared object, which is a shared library mapped by the kernel into every
process address space, in other to reduce performance penalties when system
calls switch to kernel mode.

Kernel Memory Management

[266]

Each page allocated to a process belongs to an area; thus, any page that does not live in the
VMA does not exist and cannot be referenced by the process.

High memory is perfect for user space because user space's virtual address
must be explicitly mapped. Thus, most high memory is consumed by user
applications. __GFP_HIGHMEM and GFP_HIGHUSER are the flags for
requesting the allocation of (potentially) high memory. Without these
flags, all kernel allocations return only low memory. There is no way to
allocate contiguous physical memory from user space in Linux.

One can use the find_vma function to find the VMA that corresponds to a given virtual
address. find_vma is declared in linux/mm.h:

* Look up the first VMA which satisfies addr < vm_end, NULL if none. */

extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned

long addr);

This is an example:

struct vm_area_struct *vma = find_vma(task->mm, 0x13000);

if (vma == NULL) /* Not found ? */

 return -EFAULT;

if (0x13000 >= vma->vm_end) /* Beyond the end of returned VMA ? */

 return -EFAULT;

The whole process of memory mapping can be obtained by reading files:
/proc/<PID>/map, /proc/<PID>/smap, and /proc/<PID>/pagemap.

Address translation and MMU
Virtual memory is a concept, an illusion given to a process so it thinks it has large and
almost infinite memory, and sometimes more than the system really has. It is up to the CPU
to make the conversion from virtual to physical address every time one accesses a memory
location. That mechanism is called address translation, and is performed by the Memory
Management Unit (MMU), which is a part of the CPU.

MMU protects memory from unauthorized access. Given a process, any page that needs to
be accessed must exist in one of the process VMAs, and thus, must live in the process page
table (every process has its own).

Kernel Memory Management

[267]

Memory is organized by chunks of fixed size named pages for virtual memory, and frames
for physical memory, sized 4 KB in our case. Anyway, you do not need to guess the page
size of the system you write the driver for. It is defined and accessible with the PAGE_SIZE
macro in the kernel. Remember therefore, page size is imposed by the hardware (CPU).
Considering a 4 KB page sized system, bytes 0 to 4095 fall in page 0, bytes 4096-8191 fall in
page 1, and so on.

The concept of page table is introduced to manage mapping between pages and frames.
Pages are spread over tables, so that each PTE corresponds to a mapping between a page
and a frame. Each process is then given a set of page tables to describe its whole memory
space.

In order to walk through pages, each page is assigned an index (like an array), called the
page number. When it comes to frame, it is PFN. This way, virtual memory addresses are
composed of two parts: a page number and an offset. The offset represents the 12 less
significant bits of the address, whereas 13 less significant bits represent it on 8 KB page size
systems:

Virtual address representation

How do the OS or CPU know which physical address corresponds to a given virtual
address? They use the page table as the translation table, and know that each entry's index
is a virtual page number, and the value is the PFN. To access physical memory given a
virtual memory, the OS first extracts the offset, the virtual page number, and then walks
through the process's page tables in order to match virtual page number to physical page.
Once a match occurs, it is then possible to access data into that page frame:

Address translation

Kernel Memory Management

[268]

The offset is used to point to the right location into the frame. Page table does not only hold
mapping between physical and virtual page number, but also access control information
(read/write access, privileges, and so on).

Virtual to physical address translation

Kernel Memory Management

[269]

The number of bits used to represent the offset is defined by the kernel macro PAGE_SHIFT.
PAGE_SHIFT is the number of bits to shift one bit left to obtain the PAGE_SIZE value. It is
also the number of bits to right-shift to convert the virtual address to the page number and
the physical address to the page frame number. The following are the definitions of these
macros from /include/asm-generic/page.h in the kernel sources:

#define PAGE_SHIFT 12

#ifdef __ASSEMBLY__

#define PAGE_SIZE (1 << PAGE_SHIFT)

#else

#define PAGE_SIZE (1UL << PAGE_SHIFT)

#endif

Page table is a partial solution. Let us see why. Most architecture requires 32 bits (4 bytes) to
represent a PTE. Each process having its private 3 GB user space address, we need 786,432
entries to characterize and cover a process address space. It represents too much physical
memory spent per process, just to characterize the memory mappings. In fact, a process
generally uses a small but scattered portion of its virtual address space. To resolve that
issue, the concept of level is introduced. Page tables are hierarchized by level (page level).
The space necessary to store a multi-level page table only depends on the virtual address
space actually in use, instead of being proportional to the maximum size of the virtual
address space. This way, unused memory is no longer represented, and the page table walk
through time is reduced. This way, each table entry in level N will point to an entry in table
of level N+1. Level 1 is the higher level.

Linux uses a four-level paging model:

Page Global Directory (PGD): It is the first level (level 1) page table. Each entry's
type is pgd_t in kernel (generally an unsigned long), and point on an entry in
table at the second level. In kernel, the structure tastk_struct represents a
process's description, which in turn has a member (mm) whose type is mm_struct,
and that characterizes and represents the process's memory space. In the
mm_struct, there is a processor-specific field pgd, which is a pointer on the first
entry (entry 0) of the process's level-1 (PGD) page table. Each process has one and
only one PGD, which may contain up to 1024 entries.
Page Upper Directory (PUD): This exist only on architectures using four-level
tables. It represent the socong level of indirection.

Kernel Memory Management

[270]

Page Middle Directory (PMD): This is the third indirection level, and exists only
on architectures using four-level tables.
Page Table (PTE): Leaves of the tree. It is an array of pte_t, where each entry
points to the physical page.

All levels are not always used. The i.MX6's MMU only supports a 2 level
page table (PGD and PTE), it is the case for almost all 32-bit CPUs) In this
case, PUD and PMD are simply ignored.

Two-level tables overview

Kernel Memory Management

[271]

You might ask how MMU is aware of the process page table. It is simple, MMU does not
store any address. Instead, there is a special register in the CPU, called page table base
register (PTBR) or Translation Table Base Register 0 (TTBR0), which points to the base
(entry 0) of the level-1 (top level) page table (PGD) of the process. It is exactly where the
field pdg of struct mm_struct points: current->mm.pgd == TTBR0.

At context switch (when a new process is scheduled and given the CPU), the kernel
immediately configures the MMU, and updates the PTBR with the new process's pgd. Now
when a virtual address is given to MMU, it uses the PTBR's content to locate the process's
level-1 page table (PGD), and then it uses the level-1 index, extracted from the most
significant bits (MSBs) of the virtual address, to find the appropriate table entry, which
contains a pointer to the base address of the appropriate level-2 page table. Then, from that
base address, it uses the level-2 index to find the appropriate entry and so on until it reaches
the PTE. ARM architecture (i.MX6 in our case) has a 2-level page table. In this case, the
level-2 entry is a PTE, and points to the physical page (PFN). Only the physical page is
found at this step. To access the exact memory location in the page, the MMU extracts the
memory offset, also part of the virtual address, and points on the same offset in the physical
page.

When a process needs to read from or write into a memory location (of course we're talking
about virtual memory), the MMU performs a translation into that process's page table, to
find the right entry (PTE). The virtual page number is extracted (from the virtual address)
and used by the processor as an index into the processes page table to retrieve its page table
entry. If there is a valid page table entry at that offset, the processor takes the page frame
number from this entry. If not, it means the process accessed an unmapped area of its
virtual memory. A page fault is then raised and the OS should handle it.

In the real world, address translation requires a page table walk, and it is not always a one-
shot operation. There are at least as many memory accesses as there are table levels. A four-
level page table would require four memory accesses. In other words, every virtual access
would result in five physical memory accesses. The virtual memory concept would be
useless if its access were four times slower than a physical access. Fortunately, SoC
manufacturers worked hard to find a clever trick to address this performance issue: modern
CPUs use a small associative and very fast memory called translation lookaside buffer
(TLB), in order to cache the PTEs of recently accessed virtual pages.

Kernel Memory Management

[272]

Page look up and TLB
Before the MMU proceeds to address translation, there is another step involved. As there is
a cache for recently accessed data, there is also a cache for recently translated addresses. As
a data cache speeds up the data accessing process, TLB speeds up virtual address
translation (yes, address translation is a tricky task. It is content-addressable memory,
abbreviated (CAM), where the key is the virtual address and the value is the physical
address. In other words, the TLB is a cache for the MMU. At each memory access, the MMU
first checks for recently used pages in the TLB, which contains a few of the virtual address
ranges to which physical pages are currently assigned.

How does TLB work
On a virtual memory access, the CPU walks through the TLB trying to find the virtual page
number of the page that is being accessed. This step is called TLB lookup. When a TLB entry
is found (a match occurred), one says there is a TLB hit and the CPU just keeps running and
uses the PFN found in the TLB entry to calculate the target physical address. There is no
page fault when a TLB hit occurs. As one can see, as long as a translation can be found in
the TLB, virtual memory access will be as fast as a physical access. If no TLB entry is found
(no match occured), one says there is a TLB miss.

On a TLB miss event, there are two possibilities, depending on the processor type, TLB miss
events can be handled by the software, or by the hardware, through the MMU:

Software handling: The CPU raises a TLB miss interruption, caught by the OS.
The OS then walks through the process's page table to find the right PTE. If there
is a matching and valid entry, then the CPU installs the new translation in the
TLB. Otherwise, the page fault handler is executed.
Hardware handling: It is up to the CPU (the MMU in fact) to walk through the
process's page table in hardware. If there is a matching and valid entry, the CPU
adds the new translation in the TLB. Otherwise, the CPU raises a page fault
interruption, handled by the OS.

In both cases, the page fault handler is the same: the do_page_fault() function is
executed, which is architecture-dependent. For ARM, the do_page_fault is defined in
arch/arm/mm/fault.c:

Kernel Memory Management

[273]

MMU and TLB walkthrough process

Page table and Page directory entries are architecture-dependent. It is up
to the Operating system to ensure that the structure of the table
corresponds to a structure recognized by the MMU. On the ARM
processor, you must write the location of the translation table in CP15
(coprocessor 15) register c2, and then enable the caches and the MMU by
writing to the CP15 register c1. Have a look at both
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0

056d/BABHJIBH.htm and
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0

433c/CIHFDBEJ.html for detailed information.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABHJIBH.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABHJIBH.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0433c/CIHFDBEJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0433c/CIHFDBEJ.html

Kernel Memory Management

[274]

Memory allocation mechanism
Let us look at the following figure, showing us different memory allocators existing on a
Linux-based system, and discuss it later:

Inspired from: http:/​/​free-​electrons.​com/​doc/​training/​linux-​kernel/​linux-​kernel-
slides.​pdf.

Overview of kernel memory allocator

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Kernel Memory Management

[275]

There is an allocation mechanism to satisfy any kind of memory request. Depending on
what you need memory for, you can choose the one closer to your goal. The main allocator
is the Page Allocator, which only works with pages (a page being the smallest memory unit
it can deliver). Then comes the SLAB Allocator that is built on top of the page allocator,
getting pages from it and returning smaller memory entities (by mean of slabs and caches).
This is the allocator on which the kmalloc Allocator relies.

Page allocator
Page allocator is the low-level allocator on the Linux system, the one on which other
allocators rely on. System's physical memory is made up of fixed-size blocks (called page
frames). A page frame is represented in the kernel as an instance of the struct page
structure. A page is the smallest unit of memory that the OS will give to any memory
request at low level.

Page allocation API
You will have understood that the kernel page allocator allocates and deallocates blocks of
pages using the buddy algorithm. Pages are allocated in blocks that are powers of 2 in size
(in order to get the best from the buddy algorithm). That means that it can allocate a block 1
page, 2 pages, 4 pages, 8, 16, and so on:

alloc_pages(mask, order) allocates 2order pages and returns an instance of1.
struct page which represents the first page of the reserved block. To allocate
only one page, order should be 0. It is what alloc_page(mask) does:

struct page *alloc_pages(gfp_t mask, unsigned int order)

#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)

__free_pages() is used to free memory allocated with alloc_pages()
function. It takes a pointer to the allocated page(s) as a parameter, with the same
order as was used for allocation.

void __free_pages(struct page *page, unsigned int order);

Kernel Memory Management

[276]

There are other functions working in the same way, but instead of an instance of2.
struct page, they return the address (virtual of course) of the reserved block.
These are __get_free_pages(mask, order) and __get_free_page(mask):

unsigned long __get_free_pages(gfp_t mask, unsigned int order);

unsigned long get_zeroed_page(gfp_t mask);

free_pages() is used to free page allocated with __get_free_pages(). It takes
the kernel address representing the start region of allocated page(s), along with
the order, which should be the same as that used for allocation:

free_pages(unsigned long addr, unsigned int order);

In either case, mask specifies details about the request, which are the memory zones and the
behavior of allocators. Choices available are:

GFP_USER , for user memory allocation.
GFP_KERNEL, the commonly used flag for kernel allocation.
GFP_HIGHMEM, which requests memory from the HIGH_MEM zone.
GFP_ATOMIC, which allocates memory in an atomic manner that cannot sleep.
Used when one needs to allocate memory from an interrupt context.

There is a warning on using GFP_HIGHMEM, which should not be used with
__get_free_pages() (or __get_free_page()). Since HIGHMEM memory is not
guaranteed to be contiguous, you can't return an address of a memory allocated from that
zone. Globally only a subset of GFP_* is allowed in memory-related functions:

unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

{

 struct page *page;

 /*

 * __get_free_pages() returns a 32-bit address, which cannot represent

 * a highmem page

 */

 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

 page = alloc_pages(gfp_mask, order);

 if (!page)

 return 0;

 return (unsigned long) page_address(page);

}

Kernel Memory Management

[277]

The maximum number of pages one can allocate is 1024. It means that on a
4 Kb sized system, you can allocate up to 1024*4 Kb = 4 MB at most. It is
the same for kmalloc.

Conversion functions
The page_to_virt() function is used to convert the struct page (as returned by
alloc_pages() for example) into the kernel address. virt_to_page() takes a kernel
virtual address and returns its associated struct page instance (as if it was allocated using
the alloc_pages() function). Both virt_to_page() and page_to_virt() are defined in
<asm/page.h>:

struct page *virt_to_page(void *kaddr);

void *page_to_virt(struct page *pg)

The macro page_address() can be used to return the virtual address that corresponds to
the beginning address (the logical address of course) of a struct page instance:

void *page_address(const struct page *page)

We can see how it is used in the get_zeroed_page() function:

unsigned long get_zeroed_page(unsigned int gfp_mask)

{

 struct page * page;

 page = alloc_pages(gfp_mask, 0);

 if (page) {

 void *address = page_address(page);

 clear_page(address);

 return (unsigned long) address;

 }

 return 0;

}

__free_pages() and free_pages() can be mixed. The main difference between them is
that free_page() takes a virtual address as a parameter, whereas __free_page() takes a
struct page structure.

Kernel Memory Management

[278]

Slab allocator
Slab allocator is the one on which kmalloc() relies. Its main purpose is to eliminate the
fragmentation caused by memory (de)allocation that would be caused by the buddy system
in the case of small size memory allocation, and speed up memory allocation for commonly
used objects.

The buddy algorithm
To allocate memory, the requested size is round up to a power of two, and the buddy
allocator searches the appropriate list. If no entries exist on the requested list, an entry from
the next upper list (which has blocks of twice the size of the previous list) is split into two
halves (called buddies). The allocator uses the first half, while the other is added to the next
list down. This is a recursive approach, which stops when either the buddy allocator
successfully finds a block which we can be split, or reaches the largest size of block and
there are no free blocks available.

The following case study is heavily inspired from
http://dysphoria.net/OperatingSystems1/4_allocation_buddy_system.html. For
example, if the minimum allocation size is 1 KB, and the memory size is 1 MB, the buddy
allocator will create an empty list for 1 KB holes, empty list for 2 KB holes, one for 4 KB
holes, 8 KB, 16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, and one list for 1 MB holes. All of
them are initially empty, except for the 1 MB list which has only one hole.

Now let us imagine a scenario where we want to allocate a 70K block. The buddy allocator
will round it up to 128K, and end up splitting the 1 MB into two 512K blocks, then 256K,
and finally 128K, then it will allocate one of the 128K blocks to the user. The following are
schemes that summarize this scenario:

http://dysphoria.net/OperatingSystems1/4_allocation_buddy_system.html

Kernel Memory Management

[279]

Allocation using buddy algorithm

Kernel Memory Management

[280]

The deallocation is as fast as allocation. The following figure summarize the deallocation
algorithm:

Deallocation using buddy algorithm

Kernel Memory Management

[281]

A journey into the slab allocator
Before we introduce the slab allocator, let us define some terms it uses:

Slab: This is a contiguous piece of physical memory made of several page frames.
Each slab is divided into equal chunks of the same size, used to store specific
types of kernel object, such as inodes, mutexes, and so on. Each slab is then an
array of objects.
Cache: It is made of one or more slabs in a linked list, and they are represented in
the kernel as instances the of struct kmem_cache_t structure. The cache only
stores objects of the same type (for example, inodes only, or only address space
structures)

Slabs may be in one of the following states:

Empty: This is where all objects (chunks) on the slab are marked as free
Partial: Both used and free objects exist in the slab
Full: All objects on the slab are marked as used

It is up to the memory allocator to build caches. Initially, each slab is marked as empty.
When one (code) allocates memory for a kernel object, the system looks for a free location
for that object on a partial/free slab in a cache for that type of object. If not found, the system
allocates a new slab and adds it into the cache. The new object gets allocated from this slab,
and the slab is marked as partial. When the code is done with the memory (memory freed),
the object is simply returned to the slab cache in its initialized state.

Kernel Memory Management

[282]

It is the reason why the kernel also provides helper functions to obtain zeroed initialized
memory, in order to get rid of the previous content. The slab keeps a reference count of how
many of its objects are being used, so that when all slabs in a cache are full and another
object is requested, the slab allocator is responsible for adding new slabs:

Slab cache overview

It is a bit like creating a per-object allocator. The system allocate one cache per type of
object, and only objects of the same type can be stored in a cache (For example, only
task_struct structure).

Kernel Memory Management

[283]

There are different kinds of slab allocator in the kernel, depending on whether or not one
needs compactness, cache-friendliness, or raw speed:

The SLOB, which is as compact as possible
The SLAB, which is as cache-friendly as possible
The SLUB, which is quite simple and requires fewer instruction cost counts

kmalloc family allocation
kmalloc is a kernel memory allocation function, such as malloc() in user space. Memory
returned by kmalloc is contiguous in physical memory and in virtual memory:

Kernel Memory Management

[284]

The kmalloc allocator is the general and higher-level memory allocator in the kernel, which
relies on the SLAB allocator. Memory returned from kmalloc has a kernel logical address
because it is allocated from the LOW_MEM region, unless HIGH_MEM is specified. It is declared
in <linux/slab.h>, which is the header to include when using kmalloc in your driver. The
following is the prototype:

void *kmalloc(size_t size, int flags);

size specifies the size of the memory to be allocated (in bytes). flag determines how and
where memory should be allocated. Available flags are the same as the page allocator
(GFP_KERNEL, GFP_ATOMIC, GFP_DMA, and so on).

GFP_KERNEL: This is the standard flag. We cannot use this flag in the interrupt
handler because its code may sleep. It always returns memory from LOM_MEM
zone (hence a logical address).
GFP_ATOMIC: This guarantees the atomicity of the allocation. The only flag to use
when we are in the interrupt context. Please do not abuse this, since it uses an
emergence pool of memory.

GFP_USER: This allocates memory to a user space process. Memory is then
distinct and separated from that allocated to the kernel.
GFP_HIGHUSER: This allocates memory from HIGH_MEMORY zone
GFP_DMA: This allocates memory from DMA_ZONE.

On successful allocation of memory, kmalloc returns the virtual address of the chunk
allocated, guaranteed to be physically contiguous. On error, it returns NULL.

Kmalloc relies on SLAB caches when allocating small size memories. In this case, the kernel
rounds the allocated area size up to the size of the smallest SLAB cache in which it can fit.
Always use it as your default memory allocator. In architectures used in this book (ARM
and x86), the maximum size per allocation is 4 MB, and 128 MB for total allocations. Have a
look at
https://kaiwantech.wordpress.com/2011/08/17/kmalloc-and-vmalloc-linux-kernel-me

mory-allocation-api-limits/.

The kfree function is used to free the memory allocated by kmalloc. The following is the
prototype of kfree();

void kfree(const void *ptr)

https://kaiwantech.wordpress.com/2011/08/17/kmalloc-and-vmalloc-linux-kernel-memory-allocation-api-limits/
https://kaiwantech.wordpress.com/2011/08/17/kmalloc-and-vmalloc-linux-kernel-memory-allocation-api-limits/
https://kaiwantech.wordpress.com/2011/08/17/kmalloc-and-vmalloc-linux-kernel-memory-allocation-api-limits/

Kernel Memory Management

[285]

Let us see an example:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/slab.h>

#include <linux/mm.h>

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu");

void *ptr;

static int

alloc_init(void)

{

 size_t size = 1024; /* allocate 1024 bytes */

 ptr = kmalloc(size,GFP_KERNEL);

 if(!ptr) {

 /* handle error */

 pr_err("memory allocation failed\n");

 return -ENOMEM;

 }

 else

 pr_info("Memory allocated successfully\n");

 return 0;

}

static void alloc_exit(void)

{

 kfree(ptr);

 pr_info("Memory freed\n");

}

module_init(alloc_init);

module_exit(alloc_exit);

Other family-like functions are:

void kzalloc(size_t size, gfp_t flags);

void kzfree(const void *p);

void *kcalloc(size_t n, size_t size, gfp_t flags);

void *krealloc(const void *p, size_t new_size, gfp_t flags);

Kernel Memory Management

[286]

krealloc() is the kernel equivalent of the user space realloc() function. Because
memory returned by kmalloc() retains the contents from its previous incarnation, there
could be a security risk if it's exposed to user space. To get zeroed kmalloc'ed memory, one
should use kzalloc. kzfree() is the freeing function for kzalloc(), whereas kcalloc()
allocates memory for an array, and its parameters n and size represent respectively the
number of elements in the array and the size of an element.

Since kmalloc() returns a memory area in the kernel permanent
mapping (which mean physically contiguous), the memory address can be
translated to a physical address using virt_to_phys(), or to a IO bus
address using virt_to_bus(). These macros internally call either
__pa() or __va()if necessary. The physical address
(virt_to_phys(kmalloc'ed address)), downshifted by PAGE_SHIFT ,
will produce a PFN of the first page from which the chunk is allocated.

vmalloc allocator
vmalloc() is the last kernel allocator we will discuss in the book. It returns memory only
contiguous on the virtual space (not physically contiguous):

Kernel Memory Management

[287]

The returned memory always comes from HIGH_MEM zone. Addresses returned cannot be
translated into a physical one or into bus address, because one cannot assert that the
memory is physically contiguous. It means memory returned by vmalloc() can't be used
outside the microprocessor (you cannot easily use it for DMA purposes). It is correct to use
vmalloc() to allocate memory for a large (it does not make sense to use it to allocate one
page for example) sequential that exists only in software, for example, a network buffer. It is
important to note that vmalloc() is slower than kmalloc() or page allocator functions,
because it must retrieve the memory, build the page tables, or even remap into a virtually
contiguous range, whereas kmalloc() never does that.

Before using this vmalloc API, you should include this header in the code:

#include <linux/vmalloc.h>

The following are the vmalloc family prototype:

void *vmalloc(unsigned long size);

void *vzalloc(unsigned long size);

void vfree(void *addr);

size is the size of memory you need to allocate. Upon successful allocation of memory, it
returns the address of the first byte of the allocated memory block. On failure, it returns a
NULL. vfree function, which is used to free the memory allocated by vmalloc().

The following is an example of using vmalloc:

#include<linux/init.h>

#include<linux/module.h>

#include <linux/vmalloc.h>

void *ptr;

static int alloc_init(void)

{

 unsigned long size = 8192;

 ptr = vmalloc(size);

 if(!ptr)

 {

 /* handle error */

 printk("memory allocation failed\n");

 return -ENOMEM;

 }

 else

 pr_info("Memory allocated successfully\n");

 return 0;

}

static void my_vmalloc_exit(void) /* function called at the time of rmmod

Kernel Memory Management

[288]

*/

{

 vfree(ptr); //free the allocated memory

 printk("Memory freed\n");

}

module_init(my_vmalloc_init);

module_exit(my_vmalloc_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("john Madieu, john.madieu@gmail.com");

One can use /proc/vmallocinfo to display all vmalloc'ed memory on the system.
VMALLOC_START and VMALLOC_END are two symbols that delimit the vmalloc address
range. They are architecture-dependent and defined in <asm/pgtable.h>.

Process memory allocation under the hood
Let us focus on the lower level allocator, which allocates pages of memory. The kernel will
report allocation of frame pages (physical pages) until really necessary (when those are
actually accessed, by reading or writing). This on-demand allocation is called lazy-
allocation, eliminating the risk of allocating pages that will never be used.

Whenever a page is requested, only the page table is updated, in most of the cases, a new
entry is created, which means only virtual memory is allocated. Only when you access the
page, an interrupt called page fault is raised. This interrupt has a dedicated handler, called
the page fault handler, and is called by the MMU in response to an attempt to access virtual
memory, which did not immediately succeed.

Actually, a page fault interrupt is raised whatever the access type is (read, write, execute), to
a page whose entry in the page table has not got the appropriate permission bits set to allow
that type of access. The response to that interrupt falls in one of the following three ways:

The hard fault: The page does not reside anywhere (neither in the physical
memory nor a memory-mapped file), which means the handler cannot
immediately resolve the fault. The handler will perform I/O operations in order
to prepare the physical page needed to resolve the fault, and may suspend the
interrupted process and switch to another while the system works to resolve the
issue.
The soft fault: The page resides elsewhere in memory (in the working set of
another process). It means the fault handler may resolve the fault by immediately
attaching a page of physical memory to the appropriate page table entry,
adjusting the entry, and resuming the interrupted instruction.

Kernel Memory Management

[289]

The fault cannot be resolved: This will result in a bus error or segv. SIGSEGV is
sent to the faulty process, killing it (the default behavior) unless a signal handler
has been installed for SIGSEV to change the default behavior.

Memory mappings generally start out with no physical pages attached, by defining the
virtual address ranges without any associated physical memory. The actual physical
memory is allocated later in response to a page fault exception, when the memory is
accessed, since the kernel provides some flags to determine whether the attempted access
was legal, and specify the behavior of the page fault handler. Thus, the user space brk(),
mmap() and similar allocate (virtual) space, but physical memory is attached later.

A page fault occurring in the interrupt context causes a double fault
interrupt, which usually panics the kernel (calling the panic() function) .
It is the reason why memory allocated in the interrupt context is taken
from a memory pool, which does not raise page fault interrupts. If an
interrupt occurs when a double fault is being handled, a triple fault
exception is generated, causing the CPU to shut down and the OS
immediately reboots. This behavior is actually arc-dependent.

The copy-on-write (CoW) case
The CoW (heavily used with fork()) is a kernel feature that does not allocate several time
the memory for a data shared by two or more processes, until a process touches it (write
into it); in this case memory is allocated for its private copy. The following shows how a
page fault handler manages CoW (one-page case study):

A PTE is added to the process page table, and marked as un-writable.
The mapping will result in a VMA creation in the process VMA list. The page is
added to that VMA and that VMA is marked as writable.
On page access (at the first write), the fault handler notices the difference, which
means: this is a Copy on write. It will then allocate a physical page, which is
assigned to the PTE added above, update the PTE flags, flush the TLB entry, and
execute the do_wp_page() function, which can copy the content from the shared
address to the new location.

Kernel Memory Management

[290]

Work with I/O memory to talk with hardware
Apart from performing data RAM-oriented operations, one can perform I/O memory
transactions, to talk with the hardware. When it comes to the access device's register, the
kernel offers two possibilities depending on the system architecture:

Through the I/O ports: This is also called Port Input Output (PIO). Registers are
accessible through a dedicated bus, and specific instructions (in and out, in
assembler generally) are needed to access those registers. It is the case on x86
architectures.
Memory Mapped Input Output (MMIO): This is the most common and most
used method. The device's registers are mapped to memory. Simply read and
write to a particular address to write to the registers of the device. It is the case on
ARM architectures.

PIO devices access
On a system on which PIO is used, there are two different address spaces, one for memory,
which we have already discussed, and the other one for I/O ports, called the port address
space, limited to 65,536 ports only. This is a old way, and very uncommon nowadays.

The kernel exports a few functions (symbols) to handle I/O port. Prior to accessing any port
regions, we must first inform the kernel that we are using a range of ports using the
request_region() function, which will return NULL on error. Once done with the region,
one must call release_region(). These are both declared in linux/ioport.h. Their
prototypes are:

struct resource *request_region(unsigned long start,

 unsigned long len, char *name);

void release_region(unsigned long start, unsigned long len);

Those functions inform the kernel about your intention to use/release of a region len ports,
starting from start. The name parameter should be set with the name of your device. Their
use is not mandatory. This is a kind of politeness, which prevents two or more drivers from
referencing the same range of ports. One can display information about the ports actually in
use on the system by reading the content of /proc/ioports files.

Kernel Memory Management

[291]

Once one is done with region reservation, one can access the port using the following
functions:

u8 inb(unsigned long addr)

u16 inw(unsigned long addr)

u32 inl(unsigned long addr)

which respectively access (read) 8-, 16-, or 32-bits sized (wide) ports, and the following
functions:

void outb(u8 b, unsigned long addr)

void outw(u16 b, unsigned long addr)

void outl(u32 b, unsigned long addr)

which write b data, 8-, 16-, or 32-bits sized, into addr port.

The fact that PIO uses a different set of instruction to access I/O ports or MMIO is a
disadvantage because PIO requires more instructions than normal memory to accomplish
the same task. For instance, 1-bit testing has only one instruction in MMIO, whereas PIO
requires reading the data into a register before testing the bit, which is more than one
instruction.

MMIO devices access
Memory-mapped I/O reside same address space than memory. The kernel uses part of the
address space normally used by RAM (HIGH_MEM actually) to map the devices registers, so
that instead of having real memory (that is, RAM) at that address, I/O device take place.
Thus, communicating to an I/O device becomes like reading and writing to memory
addresses devoted to that I/O device.

Like PIO, there are MMIO functions, to inform the kernel about our intention to use a
memory region. Remember it is a pure reservation only. These are
request_mem_region() and release_mem_region():

struct resource* request_mem_region(unsigned long start,

 unsigned long len, char *name)

void release_mem_region(unsigned long start, unsigned long len)

It is also a politeness.

One can display memory regions actually in use on the system by reading
the content of the /proc/iomem file.

Kernel Memory Management

[292]

Prior to accessing a memory region (and after you successfully request it), the region must
be mapped into kernel address space by calling special architecture-dependent functions
(which make use of MMU to build the page table, and thus cannot be called from the
interrupt handler). These are ioremap() and iounmap(), which handle cache coherency
too:

void __iomem *ioremap(unsigned long phys_add, unsigned long size)

void iounmap(void __iomem *addr)

ioremap() returns a __iomem void pointer to the start of the mapped region. Do not be
tempted to deference (get/set the value by reading/writing to the pointer) such pointers. The
kernel provides functions to access ioremap'ed memories. These are:

unsigned int ioread8(void __iomem *addr);

unsigned int ioread16(void __iomem *addr);

unsigned int ioread32(void __iomem *addr);

void iowrite8(u8 value, void __iomem *addr);

void iowrite16(u16 value, void __iomem *addr);

void iowrite32(u32 value, void __iomem *addr);

ioremap builds new page tables, just as vmalloc does. However, it does
not actually allocate any memory but instead, returns a special virtual
address that one can use to access the specified physical address range.

On 32-bit systems, the fact that MMIO steals physical memory address space to create
mapping for memory-mapped I/O devices is a disadvantage, since it prevents the system
from using the stolen memory for general RAM purpose.

__iomem cookie
__iomem is a kernel cookie used by Sparse, a semantic checker used by the kernel to find
possible coding faults. To take advantage of the features offered by Sparse, it should be
enabled at kernel compile time; if not, __iomem cookie will be ignored anyway.

The C=1 in the command line will enable Sparse for you, but parse should be installed first
on your system:

sudo apt-get install sparse

For example, when building a module, use:

make -C $KPATH M=$PWD C=1 modules

Kernel Memory Management

[293]

Alternatively, if the makefile is well written, just type:

make C=1

The following shows how __iomem is defined in the kernel:

#define __iomem __attribute__((noderef, address_space(2)))

It prevents us from faulty drivers performing I/O memory access. Adding the __iomem for
all I/O accesses is a way to be stricter too. Since even I/O access is done through virtual
memory (on systems with MMU), this cookie prevents us from using absolute physical
addresses, and requires us to use ioremap(), which will return a virtual address tagged
with __iomem cookie:

void __iomem *ioremap(phys_addr_t offset, unsigned long size);

So we can use dedicated functions, such as ioread23() and iowrite32(). You may
wonder why one does not use the readl()/writel() function. Those are deprecated, since
these do not make sanity checks and are less secure (no __iomem required), than
ioreadX()/iowriteX() family functions, which accept only __iomem addresses.

In addition, noderef is an attribute used by Sparse to make sure programmers do not
dereference a __iomem pointer. Even though it could work on some architecture, you are
not encouraged to do that. Use the special ioreadX()/iowriteX() function instead. It is
portable and works on every architecture. Now let us see how Sparse will warn us when
dereferencing a __iomem pointer:

#define BASE_ADDR 0x20E01F8

void * _addrTX = ioremap(BASE_ADDR, 8);

First, Sparse is not happy because of the wrong type initializer:

 warning: incorrect type in initializer (different address spaces)
 expected void *_addrTX
 got void [noderef] <asn:2>*

Or:

u32 __iomem* _addrTX = ioremap(BASE_ADDR, 8);

_addrTX = 0xAABBCCDD; / bad. No dereference */

pr_info("%x\n", *_addrTX); /* bad. No dereference */

Kernel Memory Management

[294]

Sparse is still not happy:

Warning: dereference of noderef expression

This last example makes Sparse happy:

void __iomem* _addrTX = ioremap(BASE_ADDR, 8);

iowrite32(0xAABBCCDD, _addrTX);

pr_info("%x\n", ioread32(_addrTX));

The two rules that you must remember are:

Always use __iomem where it is required whether it is as a return type or as a
parameter type, and use Sparse to make sure you did so
Do not dereference a __iomem pointer; use a dedicated function instead

Memory (re)mapping
Kernel memory sometimes needs to be remapped, either from kernel to user space, or from
kernel to kernel space. The common use case is remapping the kernel memory to user
space, but there are other cases, when one need to access high memory for example.

kmap
Linux kernel permanently maps 896 MB of its address space to the lower 896 MB of the
physical memory (low memory). On a 4 GB system, there is only 128 MB left to the kernel to
map the remaining 3.2 GB of physical memory (high memory). Low memory is directly
addressable by the kernel because of the permanent and one-to-one mapping. When it
comes to high memory (memory above 896 MB), the kernel has to map the requested region
of high memory into its address space, and the 128 MB mentioned before are especially
reserved for this. The function used to perform this trick, kmap(). kmap() , is used to map a
given page into the kernel address space.

void *kmap(struct page *page);

page is a pointer to the struct page structure to map. When a high memory page is
allocated, it is not directly addressable. kmap() is the function one must call to temporarily
map high memory into the kernel address space. The mapping will last until kunmap() is
called:

void kunmap(struct page *page);

Kernel Memory Management

[295]

By temporarily, I mean the mapping should be undone as soon as it is not needed anymore.
Remember, 128 MB is not enough to map 3.2 GB. The best programming practice is to
unmap high memory mappings when no longer required. It is why the kmap() - kunmap()
sequence has to be entered around every access to the high memory page. .

This function works on both high memory and low memory. That says, if the page structure
resides in low memory, then just the virtual address of the page is returned (because low
memory pages already have permanent mappings). If the page belongs to high memory, a
permanent mapping is created in the kernel's page tables and the address is returned:

void *kmap(struct page *page)

{

 BUG_ON(in_interrupt());

 if (!PageHighMem(page))

 return page_address(page);

 return kmap_high(page);

}

Mapping kernel memory to user space
Mapping physical addresses is one of the most useful functionalities, especially in
embedded systems. Sometime you may want to share part of kernel memory with user
space. As said earlier, CPU runs in unprivileged mode when running in user space. To let a
process access a kernel memory region, we need to remap that region into the process
address space.

Using remap_pfn_range
remap_pfn_range() maps physical memory (by means of kernel logical address) to a user
space process. It is particularly useful for implementing the mmap() system call.

After calling the mmap() system call on a file (whether it is a device file or not), the CPU will
switch to privileged mode, and run the corresponding file_operations.mmap() kernel
function, which in turn will call remap_pfn_range(). The kernel PTE of the mapped
region will be derived, and given to the process, of course, with different protection flags.
The process's VMA list is updated with a new VMA entry (with appropriate attributes) ,
which will use PTE to access the same memory.

Kernel Memory Management

[296]

Thus, instead of wasting memory by copying, the kernel just duplicates the PTEs. However,
kernel and user space PTE have different attributes. remap_pfn_range() has the following
prototype:

int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,

 unsigned long pfn, unsigned long size, pgprot_t flags);

A successful call will return 0, and a negative error code on failure. Most of the arguments
for remap_pfn_range() are provided when the mmap() method is called.

vma: This is the virtual memory area provided by the kernel in the case of a
file_operations.mmap() call. It corresponds to the user process vma into
which the mapping should be done.
addr: This is the user virtual address where VMA should start
(vma->vm_start), which will result in a mapping from a virtual address range
between addr and addr + size.
pfn: This represents the page frame number of the kernel memory region to map.
It corresponds to the physical address right-shifted by PAGE_SHIFT bits. The vma
offset (offset into the object where the mapping must start) should be taken into
account to produce the PFN. Since the vm_pgoff field of the VMA structure
contains the offset value in the form of the number of pages, it is precisely what
you need (with a PAGE_SHIFT left-shifting) to extract the offset in the form of
bytes: offset = vma->vm_pgoff << PAGE_SHIFT). Finally, pfn =
virt_to_phys(buffer + offset) >> PAGE_SHIFT.
size: This is the dimension, in bytes, of the area being remapped.
prot: This represents the protection requested for the new VMA. The driver can
mangle the default value, but should use the value found in
vma->vm_page_prot as the skeleton using the OR operator, since some of its bits
are already set by user space. Some of these flags are:

VM_IO, which specifies a device's memory mapped I/O
VM_DONTCOPY, which tells the kernel not to copy this vma on fork
VM_DONTEXPAND, which prevents vma from expanding with
mremap(2)

VM_DONTDUMP, prevents the vma from being included in the core
dump

One may need to modify this value in order to disable caching if using this
with I/O memory (vma->vm_page_prot =
pgprot_noncached(vma->vm_page_prot);).

Kernel Memory Management

[297]

Using io_remap_pfn_range
The remap_pfn_range() function discussed does not apply anymore when it comes to
mapping I/O memory to user space. In this case, the appropriate function is
io_remap_pfn_range(), whose parameters are the same. The only thing that changes is
where the PFN comes from. Its prototype looks like:

int io_remap_page_range(struct vm_area_struct *vma,

 unsigned long virt_addr,

 unsigned long phys_addr,

 unsigned long size, pgprot_t prot);

There is no need to use ioremap() when at tempting to map I/O memory to user space. -
ioremap() is intended for kernel purposes (mapping I/O memory into kernel address
space), where as io_remap_pfn_range is for user space purposes.

Just pass your real physical I/O address (downshifted by PAGE_SHIFT to produce a PFN)
directly to io_remap_pfn_range(). Even if there are some architectures where
io_remap_pfn_range() is defined as being remap_pfn_range(), there are other
architectures where it is not the case. For portability reasons, you should only use
remap_pfn_range() in situations where the PFN parameter points to RAM, and
io_remap_pfn_range() in situations where phys_addr refers to I/O memory.

The mmap file operation
Kernel mmap function is part of struct file_operations structure, which is executed
when the user executes the system call mmap(2), used to maps physical memory into a user
virtual address. The kernel translates any access to that mapped region of memory through
the usual pointer dereferences into a file operation. It is even possible to map device
physical memory directly to user space (see /dev/mem). Essentially writing to memory
becomes like writing into a file. It is just a more convenient way of calling write().

Normally, user space processes cannot access device memory directly for security purposes.
Therefore, user space processes use the mmap() system call to ask kernel to map the device
into the virtual address space of the calling process. After the mapping, the user space
process can write directly into the device memory through the returned address.

The mmap system call is declared as follows:

 mmap (void *addr, size_t len, int prot,

 int flags, int fd, ff_t offset);

Kernel Memory Management

[298]

The driver should have defined the mmap file operation (file_operations.mmap) in
order to support mmap(2). From the kernel side, the mmap field in the driver's file
operation structure (struct file_operations structure) has the following prototype:

int (*mmap) (struct file *filp, struct vm_area_struct *vma);

where:

filp is a pointer to the open device file for the driver that results from the
translation of the fd parameter.
vma is allocated and given as a parameter by the kernel. It is a pointer to the user
process's vma where the mapping should go. To understand how the kernel
creates the new vma, let's recall the mmap(2) system call's prototype:

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t

offset);

The parameters of this function somehow affect some fields of the vma:

addr: is the user space's virtual address where the mapping should start. It has
an impact on vma>vm_start. If NULL (the most portable way) was specified,
automatically determinate the correct address.
length: This specifies the length of the mapping, and indirectly has an impact on
vma->vm_end. Remember, the size of a vma is always a multiple of PAGE_SIZE.
In other words, PAGE_SIZE is always the smallest size a vma can have. The kernel
will always alter the size of the vma so that is is a multiple of PAGE_SIZE.

If length <= PAGE_SIZE

 vma->vm_end - vma->vm_start == PAGE_SIZE.

If PAGE_SIZE < length <= (N * PAGE_SIZE)

 vma->vm_end - vma->vm_start == (N * PAGE_SIZE)

prot: This affects the permissions of the VMA, which the driver can find in
vma->vm_pro. As discussed earlier, the driver can update these values, but not
alter them.
flags: This determine the type of mapping that the driver can find in
vma->vm_flags. The mapping can be private or shared.
offset: This specifies the offset within the mapped region, thus mangling the
value of vma->vm_pgoff.

Kernel Memory Management

[299]

Implementing mmap in the kernel

Since user space code cannot access kernel memory, the purpose of the mmap() function is
to derive one or more protected kernel page table entries (which correspond to the memory
to be mapped) and duplicate the user space page tables, remove the kernel flag protection,
and set permission flags that will allow the user to access the same memory as the kernel
without needing special privileges.

The steps to write a mmap file operation are as follows:

Get the mapping offset and check whether it is beyond our buffer size or not:1.

unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

if (offset >= buffer_size)

 return -EINVAL;

Check if the mapping size is bigger than our buffer size:2.

unsigned long size = vma->vm_end - vma->vm_start;

if (size > (buffer_size - offset))

 return -EINVAL;

Get the PFN which corresponds to the PFN of the page where the offset3.
position of our buffer falls:

unsigned long pfn;

/* we can use page_to_pfn on the struct page structure

 * returned by virt_to_page

 */

/* pfn = page_to_pfn (virt_to_page (buffer + offset)); */

/* Or make PAGE_SHIFT bits right-shift on the physical

 * address returned by virt_to_phys

 */

pfn = virt_to_phys(buffer + offset) >> PAGE_SHIFT;

Set the appropriate flag, whether I/O memory is present or not:4.

Disable caching using vma->vm_page_prot =
pgprot_noncached(vma->vm_page_prot).
Set the VM_IO flag: vma->vm_flags |= VM_IO.

Prevent the VMA from swapping out: vma->vm_flags |=
VM_DONTEXPAND | VM_DONTDUMP. In kernel versions older than
3.7, you should use only the VM_RESERVED flag instead.

Kernel Memory Management

[300]

Call remap_pfn_range with the PFN calculated, the size, and the protection5.
flags:

if (remap_pfn_range(vma, vma->vm_start, pfn, size,

vma->vm_page_prot)) {

 return -EAGAIN;

}

return 0;

Pass your mmap function to the struct file_operations structure:6.

static const struct file_operations my_fops = {

 .owner = THIS_MODULE,

 [...]

 .mmap = my_mmap,

 [...]

};

Linux caching system
Caching is the process by which frequently accessed or newly written data is fetched from,
or written to a small and faster memory, called a cache.

Dirty memory is data-backed (for example, file-backed) memory whose content has been
modified (typically in a cache) but not written back to the disk yet. The cached version of
the data is newer than the on-disk version, meaning that both versions are out of sync. The
mechanism by which cached data is written back on the disk (back store) is called
writeback. We will eventually update the on-disk version, bringing the two in sync. Clean
memory is file-backed memory in which the contents are in sync with the disk.

Linux delays write operations in order to speed up the read process, and reduces disk wear
leveling by writing data only when necessary. A typical example is the dd command. Its
complete execution does not mean that the data is written to the target device; this is the
reason why dd in most cases is chained to a sync command.

What is a cache?
A cache is temporary, small, and fast memory used to keep copies of data from larger and
often very slow memory, typically placed in systems where there is a working set of data
accessed far more often than the rest (for example, hard drive, memory).

Kernel Memory Management

[301]

When the first read occurs, let us say a process requests some data from the large and
slower disk, the requested data is returned to the process, and a copy of accessed data is
tracked and cached as well. Any consequent read will fetch data from the cache. Any data
modification will be applied in the cache, not on the main disk. Then, the cache region
whose content has been modified and differs (is newer than) from the on-disk version will
be tagged as dirty. When the cache runs full, and since cached data is tacked, new data
begins to evict the data that has not been accessed and has been sitting idle for the longest,
so that if it is needed again, it will have to be fetched from the large/slow storage again.

CPU cache – memory caching
There are three cache memories on the modern CPU, ordered by size and access speed:

The L1 cache that has the smallest amount of memory (often between 1k and 64k)
is directly accessible by the CPU in a single clock cycle, which makes it the fastest
as well. Frequently used things are in L1 and remain in L1 until some other
thing's usage becomes more frequent than the existing one and there is less space
in L1. If so, it is moved to a bigger space L2.
The L2 cache is the middle level, with a larger amount of memory (up to several
megabytes) adjacent to the processor, which can be accessed in a small number of
clock cycles. This applies when moving things from L2 to L3.
The L3 cache, even slower than L1 and L2, may be two times faster than the main
memory (RAM). Each core may have its own L1 and L2 cache; therefore, they all
share the L3 cache. Size and speed are the main criteria that change between each
cache level: L1 < L2 < L3. Whereas original memory access may be 100 ns for
example, the L1 cache access can be 0.5 ns.

A real-life example is how a library may put several copies of the most
popular titles on display for easy and fast access, but have a large-scale
archive with a far greater collection available, at the inconvenience of
having to wait for a librarian to go get it for you. The display cases would
be analogous to a cache, and the archive would be the large, slow memory.

The main issue that a CPU cache addresses is latency, which indirectly increases the
throughput, because access to uncached memory may take a while.

Kernel Memory Management

[302]

The Linux page cache – disk caching
The page cache, as its name suggests, is a cache of pages in RAM, containing chunks of
recently accessed files. The RAM acts as a cache for pages that resides on the disk. In other
words, it is the kernel cache of file contents. Cached data may be regular filesystem files,
block device files, or memory-mapped files. Whenever a read() operation is invoked, the
kernel first checks whether the data resides in the page cache, and immediately returns it if
found. Otherwise, the data will be read from the disk.

If a process needs to write data without any caching involved, it has to use
the O_SYNC flag, which guarantees the write() command will not return
before all data has been transferred to the disk, or the O_DIRECT, flag,
which only guarantees that no caching will be used for data transfer. That
says, O_DIRECT actually depends on filesystem used and is not
recommended.

Specialized caches (user space caching)
Web browser cache: This stores frequently accessed web pages and images onto
the disk, instead of fetching them from the web. Whereas the first access to online
data may last for more than hundreds of milliseconds, the second access will
fetch data from the cache (which is a disk in this case) in only 10 ms.
libc or user-app cache: Memory and disk cache implementations will try to guess
what you need to use next, while browser caches keep a local copy in case you
need to use it again.

Why delay writing data to disk?
There are essentially two reasons to that:

Better usage of the disk characteristics; this is efficiency
Allows the application to continue immediately after a write; this is performance

Kernel Memory Management

[303]

For example, delaying disk access and processing data only when it reaches a certain size
may improve disk performance, and reduce wear leveling of eMMC (on embedded
systems). Every chunk write is merged into a single and contiguous write operation.
Additionally, written data is cached, allowing the process to return immediately so that any
subsequent read will fetch the data from the cache, resulting in a more responsive program.
Storage devices prefer a small number of large operations instead of several small
operations.

By reporting write operation on the permanent storage later, we can get rid of latency issues
introduced by these disks, which are relatively slow.

Write caching strategies
Depending on the cache strategy, several benefits may be enumerated:

Reduced latency on data accessing, thus increasing application performance
Improved storage lifetime
Reduced system work load
Reduced risk of data loss

Caching algorithms usually fall into one of the following three different strategies:

The write-throughcache, where any write operation will automatically update1.
both the memory cache and the permanent storage. This strategy is preferred for
applications where data loss cannot be tolerated, and applications that write and
then frequently re-read data (since data is stored in the cache and results in low
read latency).
The write-aroundcache, which is similar to write-through, with the difference2.
that it immediately invalidates the cache (which is also costly for the system since
any write results in automatic cache invalidation). The main consequence is that
any subsequent read will fetch data from the disk, which is slow, thus increasing
latency. It prevents the cache from being flooded with data that will not be
subsequently read.

Kernel Memory Management

[304]

Linux employs the third and last strategy, called write back cache, which can3.
write data to the cache every time a change occurs without updating the
corresponding location in the main memory. Instead, the corresponding pages in
the page cache are marked as dirty (this task is done by MMU using TLB) and
added to a so-called list, maintained by the kernel. The data is written into the
corresponding location in the permanent storage only at specified intervals or
under certain conditions. When the data in the pages is up to date with the data
in the page cache, the kernel removes the pages from the list, and they are not
marked dirty.
On Linux systems, you can find this from /proc/meminfo under Dirty:4.

 cat /proc/meminfo | grep Dirty

The flusher threads

The write back cache defers I/O data operations in the page cache. A set or kernel threads,
called flusher threads, are responsible for that. Dirty page write back occurs when any one
of the following situations is satisfied:

When free memory falls below a specified threshold to regain memory consumed1.
by dirty pages.
When dirty data lasts until a specific period. The oldest data is written back to the2.
disk to ensure that dirty data does not remain dirty indefinitely.
When a user process invokes the sync() and fsync() system calls. This is an on3.
demand write back.

Device-managed resources – Devres
Devres is a kernel facility helping the developer by automatically freeing the allocated
resource in a driver. It simplifies errors handling in init/probe/open functions. With
devres, each resource allocator has its managed version that will take care of resource
release and freeing for you.

This section heavily relies on the Documentation/driver-model/devres.txt file
in the kernel source tree, which deals with devres API and lists supported
functions along with their descriptions.

Kernel Memory Management

[305]

The memory allocated with resource-managed functions is associated with the device.
devres consists of a linked list of arbitrarily sized memory areas associated with a struct
device. Each devers resource allocator inserts the allocated resource in the list. The
resource remains available until it is manually freed by the code, when the device is
detached from the system, or when the driver is unloaded. Each devres entry is associated
with a release function. There are different ways to release a devres. No matter what, all
devres entries are released on driver detach. On release, the associated release function is
invoked and then the devres entry is freed.

The following is the list of resources available for a driver:

Memory for private data structures
Interrutps (IRQs)
Memory region allocation (request_mem_region())
I/O mapping of memory regions (ioremap())
Buffer memory (possibly with DMA mapping)
Different framework data structures: Clocks, GPIOs, PWMs, USB phy, regulators,
DMA, and so on

Almost every function discussed in this chapter has its managed version. In the majority of
cases, the name given to the managed version of a function is obtained by prefixing the
original function name with devm. For example, devm_kzalloc() is the managed version
of kzalloc(). Additionally, parameters remain unchanged, but are shifted to the right,
since the first parameter is the struct device for which the resource is allocated. There is an
exception for functions for which the non-managed version is already given a struct device
in its parameters:

void *kmalloc(size_t size, gfp_t flags)

void * devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)

When the device is detached from the system or the driver for the device is unloaded, that
memory is freed automatically. It is possible to free the memory with devm_kfree() if it's
no longer needed.

The old way:

ret = request_irq(irq, my_isr, 0, my_name, my_data);

if(ret) {

 dev_err(dev, "Failed to register IRQ.\n");

 ret = -ENODEV;

 goto failed_register_irq; /* Unroll */

}

Kernel Memory Management

[306]

The right way:

ret = devm_request_irq(dev, irq, my_isr, 0, my_name, my_data);

if(ret) {

 dev_err(dev, "Failed to register IRQ.\n");

 return -ENODEV; /* Automatic unroll */

}

Summary
This chapter is one of the most important chapters. It demystifies memory management and
allocation (how and where) in the kernel. Every memory aspect is discussed and detailed,
as well as dvres is also explained. The caching mechanism is briefly discussed in order to
give an overview of what goes on under the hood during I/O operations. It is a strong base
from which introduce and understand the next chapter, which deals with DMA.

12
DMA – Direct Memory Access

DMA is a feature of computer systems that allows devices to access the main system
memory RAM without CPU intervention, which then allows them to devote themselves to
other tasks. One typically uses it for accelerating network traffic, but it supports any kind of
copy.

The DMA controller is the peripheral responsible for DMA management. One mostly finds
it in modern processors and microcontrollers. DMA is a feature used to perform memory
read and write operations without stealing CPU cycles. When one needs to transfer a block
of data, the processor feeds the DMA controller with the source and destination addresses
and the total number of bytes. The DMA controller then transfers the data from the source
to the destination automatically, without stealing CPU cycles. When the number of bytes
remaining reaches zero, the block transfer ends.

In this chapter, we will cover the following topics:

Coherent and non-coherent DMA mappings, as well as coherency issues
DMA engine API
DMA and DT binding

DMA – Direct Memory Access

[308]

Setting up DMA mappings
For any type of DMA transfer, one needs to provide source and destination addresses, as
well as the number of words to transfer. In the case of a peripheral DMA, the peripheral's
FIFO serves as either the source or the destination. When the peripheral serves as the
source, a memory location (internal or external) serves as the destination address. When the
peripheral serves as the destination, a memory location (internal or external) serves as the
source address.

With a peripheral DMA, we specify either the source or the destination, depending on the
direction of the transfer. In others words, a DMA transfer requires suitable memory
mappings. This is what we will discuss in the following sections.

Cache coherency and DMA
As discussed in Chapter 11, Kernel Memory Management, copies of recently accessed
memory areas are stored in the cache. This applies to DMA memory too. The reality is that
memory shared between two independent devices is generally the source of cache
coherency problems. Cache incoherence is an issue coming from the fact that other devices
may not be aware of an update from a writing device. On the other hand, cache coherency
ensures that every write operation appears to occur instantaneously, so that all devices
sharing the same memory region see exactly the same sequence of changes.

A well-explained situation of the coherency issue is illustrated in the following excerpt from
LDD3:

Let us imagine a CPU equipped with a cache and an external memory that can be accessed
directly by devices using DMA. When the CPU accesses location X in the memory, the
current value will be stored in the cache. Subsequent operations on X will update the
cached copy of X, but not the external memory version of X, assuming a write-back cache.
If the cache is not flushed to the memory before the next time a device tries to access X, the
device will receive a stale value of X. Similarly, if the cached copy of X is not invalidated
when a device writes a new value to the memory, then the CPU will operate on a stale
value of X.

There are actually two ways to address this issue:

A hardware-based solution. Such systems are coherent systems.
A software-based solution, where the OS is responsible for ensuring cache
coherency. One calls such systems non-coherent systems.

DMA – Direct Memory Access

[309]

DMA mappings
Any suitable DMA transfer requires suitable memory mapping. A DMA mapping consists
of allocating a DMA buffer and generating a bus address for it. Devices actually use bus
addresses. Bus addresses are each instance of the dma_addr_t type.

One distinguishes two types of mapping: coherent DMA mappings and streaming DMA
mappings. One can use the former over several transfers, which automatically addresses
cache coherency issues. Therefore, it is too expensive. The streaming mapping has a lot of
constraints and does not automatically address coherency issues, although, there is a
solution for that, which consists of several function calls between each transfer. Coherent
mapping usually exists for the life of the driver, whereas one streaming mapping is usually
unmapped once the DMA transfer completes.

One should use streaming mapping when one can and coherent mapping when one must.

Back to the code; the main header should include the following to handle DMA mapping:

#include <linux/dma-mapping.h>

Coherent mapping
The following function sets up a coherent mapping:

void *dma_alloc_coherent(struct device *dev, size_t size,

 dma_addr_t *dma_handle, gfp_t flag)

This function handles both the allocation and the mapping of the buffer, and returns a
kernel virtual address for that buffer, which is size bytes wide and accessible by the CPU.
dev is your device structure. The third argument is an output parameter that points to the
associated bus address. Memory allocated for the mapping is guaranteed to be physically
contiguous, and flag determines how memory should be allocated, which is usually
GFP_KERNEL, or GFP_ATOMIC (if we are in an atomic context).

Do note that this mapping is said to be:

Consistent (coherent), since it allocates uncached unbuffered memory for a
device for performing DMA
Synchronous, because a write by either the device or the CPU can be
immediately read by either without worrying about cache coherency

DMA – Direct Memory Access

[310]

In order to free a mapping, one can use the following function:

void dma_free_coherent(struct device *dev, size_t size,

 void *cpu_addr, dma_addr_t dma_handle);

Here cpu_addr corresponds to the kernel virtual address returned by
dma_alloc_coherent(). This mapping is expensive, and the minimum it can allocate is a
page. In fact, it only allocates the number of pages that is the power of 2. The order of pages
is obtained with int order = get_order(size). One should use this mapping for
buffers that last the life of the device.

Streaming DMA mapping
Streaming mapping has more constraints, and is different from coherent mapping for the
following reasons:

Mappings need to work with a buffer that has already been allocated.
Mappings may accept several non-contiguous and scattered buffers.
A mapped buffer belongs to the device and not to the CPU anymore. Before the
CPU can use the buffer, it should be unmapped first (after dma_unmap_single()
or dma_unmap_sg()). This is for caching purposes.
For write transactions (CPU to device), the driver should place data in the buffer
before the mapping.
The direction the data should move into has to be specified, and the data should
only be used based on this direction.

One may wonder why one should not access the buffer until it is unmapped. The reason is
simple: CPU mapping is cacheable. The dma_map_*() family functions, which are used for
streaming mapping, will first clean/invalidate the caches related to the buffer and rely on
the CPU not to access it until the corresponding dma_unmap_*(). That will then invalidate
(if necessary) the caches again, in case of any speculative fetches in the meantime, before the
CPU may read any data written to memory by the device. Now the CPU can access the
buffer.

There are actually two forms of streaming mapping:

Single buffer mapping, which allow only one-page mapping
Scatter/gather mapping, which allows passing several buffers (scattered over
memory)

DMA – Direct Memory Access

[311]

For either mapping, direction should be specified, by a symbol of type enum
dma_data_direction, defined in include/linux/dma-direction.h:

enum dma_data_direction {

 DMA_BIDIRECTIONAL = 0,

 DMA_TO_DEVICE = 1,

 DMA_FROM_DEVICE = 2,

 DMA_NONE = 3,

};

Single buffer mapping

This is for occasional mapping. One can set up a single buffer with this:

dma_addr_t dma_map_single(struct device *dev, void *ptr,

 size_t size, enum dma_data_direction direction);

The direction should be DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_BIDIRECTIONAL, as
described in the preceding code. ptr is the kernel virtual address of the buffer, and
dma_addr_t is the returned bus address for the device. Make sure to use the direction that
really fits your need, not just always DMA_BIDIRECTIONAL.

One should free the mapping with this:

void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,

 size_t size, enum dma_data_direction direction);

Scatter/gather mapping

Scatter/gather mappings are a special type of streaming DMA mapping where one can
transfer several buffer regions in a single shot, instead of mapping each buffer individually
and transferring them one by one. Suppose you have several buffers that might not be
physically contiguous, all of which need to be transferred at the same time to or from the
device. This situation may occur due to:

A readv or writev system call
A disk I/O request
Or simply a list of pages in a mapped kernel I/O buffer

DMA – Direct Memory Access

[312]

The kernel represents the scatterlist as a coherent structure, struct scatterlist :

struct scatterlist {

 unsigned long page_link;

 unsigned int offset;

 unsigned int length;

 dma_addr_t dma_address;

 unsigned int dma_length;

};

In order to set up a scatterlist mapping, one should:

Allocate your scattered buffers.
Create an array of the scatter list and fill it with allocated memory using
sg_set_buf(). Note that scatterlist entries must be of page size (except ends).
Call dma_map_sg() on the scatterlist.
Once done with DMA, call dma_unmap_sg() to unmap the scatterlist.

While one can send contents of several buffers over DMA one at a time by individually
mapping each of them, scatter/gather can send them all at once by sending the pointer to
the scatterlist to the device, along with a length, which is the number of entries in the list:

u32 *wbuf, *wbuf2, *wbuf3;

wbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);

wbuf2 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);

wbuf3 = kzalloc(SDMA_BUF_SIZE/2, GFP_DMA);

struct scatterlist sg[3];

sg_init_table(sg, 3);

sg_set_buf(&sg[0], wbuf, SDMA_BUF_SIZE);

sg_set_buf(&sg[1], wbuf2, SDMA_BUF_SIZE);

sg_set_buf(&sg[2], wbuf3, SDMA_BUF_SIZE/2);

ret = dma_map_sg(NULL, sg, 3, DMA_MEM_TO_MEM);

DMA – Direct Memory Access

[313]

The same rules described in the single-buffer mapping section apply to scatter/gather.

DMA scatter/gather

DMA – Direct Memory Access

[314]

dma_map_sg() and dma_unmap_sg() take care of cache coherency. But if one needs to use
the same mapping to access (read/write) the data between the DMA transfer, the buffers
must be synced between each transfer in an appropriate manner, by either
dma_sync_sg_for_cpu() if the CPU needs to access the buffers, or
dma_sync_sg_for_device() if it is the device. Similar functions for single region
mapping are dma_sync_single_for_cpu() and dma_sync_single_for_device():

void dma_sync_sg_for_cpu(struct device *dev,

 struct scatterlist *sg,

 int nents,

 enum dma_data_direction direction);

void dma_sync_sg_for_device(struct device *dev,

 struct scatterlist *sg, int nents,

 enum dma_data_direction direction);

void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,

 size_t size,

 enum dma_data_direction dir)

void dma_sync_single_for_device(struct device *dev,

 dma_addr_t addr, size_t size,

 enum dma_data_direction dir)

There is no need to call the preceding functions again after the buffer(s) has been
unmapped. You can just read the content.

Concept of completion
This section will briefly describe completion and the necessary part of its API that the DMA
transfer uses. For a complete description, please feel free to have a look at the kernel
documentation at Documentation/scheduler/completion.txt. A common pattern in kernel
programming involves initiating some activity outside of the current thread, then waiting
for that activity to complete.

Completion is a good alternative to sleep() when waiting for a buffer to be used. It is
suitable for sensing data, which is exactly what the DMA callback does.

Working with completion requires this header:

<linux/completion.h>

DMA – Direct Memory Access

[315]

Like other kernel facility data structures, one can create instances of the struct
completion structure either statically or dynamically:

Static declaration and initialization looks like this:

 DECLARE_COMPLETION(my_comp);

Dynamic allocation looks like this:

struct completion my_comp;

init_completion(&my_comp);

When the driver begins some work whose completion must be waited for (a DMA
transaction in our case), it just has to pass the completion event to the
wait_for_completion() function:

void wait_for_completion(struct completion *comp);

When some other part of the code has decided that the completion has happened
(transaction completes), it can wake up anybody (actually the code that needs to access
DMA buffer) who is waiting with one of:

void complete(struct completion *comp);

void complete_all(struct completion *comp);

As one can guess, complete() will wake up only one waiting process, while
complete_all() will wake up every one waiting for that event. Completions are
implemented in such a way that they will work properly even if complete() is called
before wait_for_completion().

Along with code samples used in the next sections, one will have a better understanding of
how this works.

DMA – Direct Memory Access

[316]

DMA engine API
The DMA engine is a generic kernel framework for developing a DMA controller driver.
The main goal of DMA is offloading the CPU when it comes to copy memory. One
delegates a transaction (I/O data transfers) to the DMA engine by use of channels. A DMA
engine, through its driver/API, exposes a set of channels, which can be used by other
devices (slaves).

DMA Engine layout

Here we will simply walk through that (slave) API, which is applicable for slave DMA
usage only. The mandatory header here is as follows:

 #include <linux/dmaengine.h>

The slave DMA usage is straightforward, and consists of the following steps:

Allocate a DMA slave channel.1.
Set slave and controller specific parameters.2.
Get a descriptor for the transaction.3.
Submit the transaction.4.
Issue pending requests and wait for callback notification.5.

DMA – Direct Memory Access

[317]

One can see a DMA channel as a highway for I/O data transfer

Allocate a DMA slave channel
One requests a channel using dma_request_channel(). Its prototype is as follows:

struct dma_chan *dma_request_channel(const dma_cap_mask_t *mask,

 dma_filter_fn fn, void *fn_param);

mask is a bitmap mask that represents the capabilities the channel must satisfy. One uses it
essentially to specify the transfer types the driver needs to perform:

enum dma_transaction_type {

 DMA_MEMCPY, /* Memory to memory copy */

 DMA_XOR, /* Memory to memory XOR*/

 DMA_PQ, /* Memory to memory P+Q computation */

 DMA_XOR_VAL, /* Memory buffer parity check using XOR */

 DMA_PQ_VAL, /* Memory buffer parity check using P+Q */

 DMA_INTERRUPT, /* The device is able to generrate dummy transfer that

will generate interrupts */

 DMA_SG, /* Memory to memory scatter gather */

 DMA_PRIVATE, /* channels are not to be used for global memcpy.

Usually used with DMA_SLAVE */

 DMA_SLAVE, /* Memory to device transfers */

 DMA_CYCLIC, /* Device is ableto handle cyclic tranfers */

 DMA_INTERLEAVE, /* Memoty to memory interleaved transfer */

}

The dma_cap_zero() and dma_cap_set() functions are used to clear the mask and set
the capability we need. For example:

dma_cap_mask my_dma_cap_mask;

struct dma_chan *chan;

dma_cap_zero(my_dma_cap_mask);

dma_cap_set(DMA_MEMCPY, my_dma_cap_mask); /* Memory to memory copy */

chan = dma_request_channel(my_dma_cap_mask, NULL, NULL);

In the preceding excerpt, dma_filter_fn is defined as:

typedef bool (*dma_filter_fn)(struct dma_chan *chan,

 void *filter_param);

DMA – Direct Memory Access

[318]

If filter_fn parameter (which is optional) is NULL, dma_request_channel() will simply
return the first channel that satisfies the capability mask. Otherwise, when the mask
parameter is insufficient for specifying the necessary channel, one can use the filter_fn
routine as a filter for the available channels in the system. The kernel calls the filter_fn
routine once for each free channel in the system. Upon seeing a suitable channel,
filter_fn should return DMA_ACK, which will tag the given channel to be the return value
from dma_request_channel().

A channel allocated through this interface is exclusive to the caller, until
dma_release_channel() is called:

void dma_release_channel(struct dma_chan *chan)

Set slave and controller specific parameters
This step introduces a new data structure, struct dma_slave_config, which represents
the runtime configuration for the DMA slave channel. This allows clients to specify settings,
such as the DMA direction, DMA addresses, bus width, DMA burst lengths, and so on, for
the peripheral.

int dmaengine_slave_config(struct dma_chan *chan,

struct dma_slave_config *config)

The struct dma_slave_config structure looks like this:

/*

 * Please refer to the complete description in

 * include/linux/dmaengine.h

 */

struct dma_slave_config {

 enum dma_transfer_direction direction;

 phys_addr_t src_addr;

 phys_addr_t dst_addr;

 enum dma_slave_buswidth src_addr_width;

 enum dma_slave_buswidth dst_addr_width;

 u32 src_maxburst;

 u32 dst_maxburst;

 [...]

};

DMA – Direct Memory Access

[319]

The following is the meaning of each element in the structure:

direction: This indicates whether the data should go in or out on this slave
channel, right now. The possible values are:

/* dma transfer mode and direction indicator */

enum dma_transfer_direction {

 DMA_MEM_TO_MEM, /* Async/Memcpy mode */

 DMA_MEM_TO_DEV, /* From Memory to Device */

 DMA_DEV_TO_MEM, /* From Device to Memory */

 DMA_DEV_TO_DEV, /* From Device to Device */

 [...]

};

src_addr: This is the physical address (actually the bus address) of the buffer
where the DMA slave data should be read (RX). This element is ignored if the
source is memory. dst_addr is the physical address (actually the bus address) of
the buffer where the DMA slave data should be written (TX), which is ignored if
the source is memory. src_addr_width is the width in bytes of the source (RX)
register where the DMA data should be read. If the source is memory, this may
be ignored depending on the architecture. The legal values are 1, 2, 4, or 8.
Therefore, dst_addr_width is the same as src_addr_width but for the
destination target (TX).
Any bus width must be one of the following enumerations:

enum dma_slave_buswidth {

 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,

 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,

 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,

 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,

 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,

 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,

 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,

 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,

 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,

};

src_maxburs: This is the maximum number of words (here, consider words as
units of the src_addr_width member, not in bytes) that can be sent in one burst
to the device. Typically, something like half the FIFO depth on I/O peripherals so
you do not overflow it. This may or may not be applicable on memory sources.
dst_maxburst is the same as src_maxburst but for the destination target.

DMA – Direct Memory Access

[320]

For example:

struct dma_chan *my_dma_chan;

dma_addr_t dma_src, dma_dst;

struct dma_slave_config my_dma_cfg = {0};

/* No filter callback, neither filter param */

my_dma_chan = dma_request_channel(my_dma_cap_mask, 0, NULL);

/* scr_addr and dst_addr are ignored in this structure for mem to mem copy

*/

my_dma_cfg.direction = DMA_MEM_TO_MEM;

my_dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_32_BYTES;

dmaengine_slave_config(my_dma_chan, &my_dma_cfg);

char *rx_data, *tx_data;

/* No error check */

rx_data = kzalloc(BUFFER_SIZE, GFP_DMA);

tx_data = kzalloc(BUFFER_SIZE, GFP_DMA);

feed_data(tx_data);

/* get dma addresses */

dma_src_addr = dma_map_single(NULL, tx_data,

BUFFER_SIZE, DMA_MEM_TO_MEM);

dma_dst_addr = dma_map_single(NULL, rx_data,

BUFFER_SIZE, DMA_MEM_TO_MEM);

In the preceding excerpt, one calls dma_request_channel() function in order to take the
owner chip of the DMA channel, on which one calls dmaengine_slave_config() to
apply its configuration. dma_map_single() is called in order to map rx and tx buffers, so
that these can be used for purpose of DMA.

DMA – Direct Memory Access

[321]

Get a descriptor for transaction
If you remember the first step of this section, when one requests a DMA channel, the return
value is an instance of the struct dma_chan structure. If one looks at its definition in
include/linux/dmaengine.h, one will notice that it contains a struct dma_device
*device field, which represents the DMA device (the controller actually) that supplied the
channel. The kernel driver of this controller is responsible (it is a rule imposed by the kernel
API for DMA controller drivers) for exposing a set of functions to prepare DMA
transactions, where each of them correspond to a DMA transaction type (enumerated in
step 1). Depending on the transaction type, one has no choice but to choose the dedicated
function. Some of these functions are:

device_prep_dma_memcpy(): Prepares a memcpy operation
device_prep_dma_sg(): Prepare a scatter/gather memcpy operation
device_prep_dma_xor(): For a xor operation
device_prep_dma_xor_val(): Prepares a xor validation operation
device_prep_dma_pq(): Prepares a pq operation
device_prep_dma_pq_val(): Prepares a pqzero_sum operation
device_prep_dma_memset(): Prepares a memset operation
device_prep_dma_memset_sg(): For a memset operation over a scatterlist
device_prep_slave_sg(): Prepares a slave DMA operation
device_prep_interleaved_dma(): Transfers an expression in a generic way

Let us have a look at drivers/dma/imx-sdma.c, which is the i.MX6 DMA controller
(SDMA) driver. Each of these functions returns a pointer to a struct
dma_async_tx_descriptor structure, which corresponds to the transaction descriptor.
With memory-to-memory copy, one will use device_prep_dma_memcpy:

struct dma_device *dma_dev = my_dma_chan->device;

struct dma_async_tx_descriptor *tx = NULL;

tx = dma_dev->device_prep_dma_memcpy(my_dma_chan, dma_dst_addr,

dma_src_addr, BUFFER_SIZE, 0);

if (!tx) {

 printk(KERN_ERR "%s: Failed to prepare DMA transfer\n",

 __FUNCTION__);

 /* dma_unmap_* the buffer */

}

DMA – Direct Memory Access

[322]

In fact, we should have used dmaengine_prep_* DMA engine API. Just note that these
functions internally do what we just performed earlier. For example, for memory-to-
memory, one could have used the device_prep_dma_memcpy () function:

struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(

 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,

 size_t len, unsigned long flags)

Our sample becomes:

struct dma_async_tx_descriptor *tx = NULL;

tx = dma_dev->device_prep_dma_memcpy(my_dma_chan, dma_dst_addr,

dma_src_addr, BUFFER_SIZE, 0);

if (!tx) {

 printk(KERN_ERR "%s: Failed to prepare DMA transfer\n",

 __FUNCTION__);

 /* dma_unmap_* the buffer */

}

Please have a look at include/linux/dmaengine.h, in the definition of a struct
dma_device structure, to see how all of these hooks are implemented.

Submit the transaction
To put the transaction in the driver pending queue, one uses dmaengine_submit(). Once
the descriptor has been prepared and the callback information added, one should place it
on the DMA engine drivers pending the queue:

dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)

This function returns a cookie that one can use to check the progress of DMA activity
through other DMA engines. dmaengine_submit() will not start the DMA operation, it
merely adds it to the pending queue. How to start the transaction is discussed in the next
step:

struct completion transfer_ok;

init_completion(&transfer_ok);

tx->callback = my_dma_callback;

/* Submit our dma transfer */

dma_cookie_t cookie = dmaengine_submit(tx);

if (dma_submit_error(cookie)) {

 printk(KERN_ERR "%s: Failed to start DMA transfer\n", __FUNCTION__);

 /* Handle that */

DMA – Direct Memory Access

[323]

[...]

}

Issue pending DMA requests and wait for
callback notification
Starting the transaction is the last step of the DMA transfer setup. One activates transactions
in the pending queue of a channel by calling dma_async_issue_pending() on that
channel. If the channel is idle then the first transaction in the queue is started and
subsequent ones are queued up. On completion of a DMA operation, the next one in the
queue is started and a tasklet triggered. This tasklet is in charge of calling the client driver
completion callback routine for notification, if set:

void dma_async_issue_pending(struct dma_chan *chan);

An example would look like this:

dma_async_issue_pending(my_dma_chan);

wait_for_completion(&transfer_ok);

dma_unmap_single(my_dma_chan->device->dev, dma_src_addr,

BUFFER_SIZE, DMA_MEM_TO_MEM);

dma_unmap_single(my_dma_chan->device->dev, dma_src_addr,

 BUFFER_SIZE, DMA_MEM_TO_MEM);

/* Process buffer through rx_data and tx_data virtualaddresses. */

The wait_for_completion() function will block until our DMA callback gets called,
which will update (complete) our completion variable in order to resume the previous
blocked code. It is a suitable alternative to while (!done) msleep(SOME_TIME);.

static void my_dma_callback()

{

 complete(transfer_ok);

 return;

}

The DMA engine API function that actually issues pending transactions is
dmaengine_issue_pending(struct dma_chan *chan), which is a
wrap around dma_async_issue_pending().

DMA – Direct Memory Access

[324]

Putting it all together – NXP SDMA (i.MX6)
The SDMA engine is a programmable controller in the i.MX6 and each peripheral has its
own copy function in this controller. One uses this enum to determine their addresses:

enum sdma_peripheral_type {

 IMX_DMATYPE_SSI, /* MCU domain SSI */

 IMX_DMATYPE_SSI_SP, /* Shared SSI */

 IMX_DMATYPE_MMC, /* MMC */

 IMX_DMATYPE_SDHC, /* SDHC */

 IMX_DMATYPE_UART, /* MCU domain UART */

 IMX_DMATYPE_UART_SP, /* Shared UART */

 IMX_DMATYPE_FIRI, /* FIRI */

 IMX_DMATYPE_CSPI, /* MCU domain CSPI */

 IMX_DMATYPE_CSPI_SP, /* Shared CSPI */

 IMX_DMATYPE_SIM, /* SIM */

 IMX_DMATYPE_ATA, /* ATA */

 IMX_DMATYPE_CCM, /* CCM */

 IMX_DMATYPE_EXT, /* External peripheral */

 IMX_DMATYPE_MSHC, /* Memory Stick Host Controller */

 IMX_DMATYPE_MSHC_SP, /* Shared Memory Stick Host Controller */

 IMX_DMATYPE_DSP, /* DSP */

 IMX_DMATYPE_MEMORY, /* Memory */

 IMX_DMATYPE_FIFO_MEMORY,/* FIFO type Memory */

 IMX_DMATYPE_SPDIF, /* SPDIF */

 IMX_DMATYPE_IPU_MEMORY, /* IPU Memory */

 IMX_DMATYPE_ASRC, /* ASRC */

 IMX_DMATYPE_ESAI, /* ESAI */

 IMX_DMATYPE_SSI_DUAL, /* SSI Dual FIFO */

 IMX_DMATYPE_ASRC_SP, /* Shared ASRC */

 IMX_DMATYPE_SAI, /* SAI */

};

Despite the generic DMA engine API, any constructor may provide its own custom data
structure. This is the case for the imx_dma_data structure, which is a private data (used to
describe the DMA device type one needs to use) that is to be passed to the .private field
of the struct dma_chan in the filter callback:

struct imx_dma_data {

 int dma_request; /* DMA request line */

 int dma_request2; /* secondary DMA request line */

 enum sdma_peripheral_type peripheral_type;

 int priority;

};

enum imx_dma_prio {

 DMA_PRIO_HIGH = 0,

DMA – Direct Memory Access

[325]

 DMA_PRIO_MEDIUM = 1,

 DMA_PRIO_LOW = 2

};

These structures and enum are all specific to i.MX and are defined in
include/linux/platform_data/dma-imx.h. Now, let us write our kernel DMA
module. It allocates two buffers (source and destination). Fill the source with predefined
data, and perform a transaction in order to copy src into dst. One can improve this module
by using data coming from user space (copy_from_user()). This driver is inspired from
the one provided in the imx-test package:

#include <linux/module.h>

#include <linux/slab.h> /* for kmalloc */

#include <linux/init.h>

#include <linux/dma-mapping.h>

#include <linux/fs.h>

#include <linux/version.h>

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,0,35))

#include <linux/platform_data/dma-imx.h>

#else

#include <mach/dma.h>

#endif

#include <linux/dmaengine.h>

#include <linux/device.h>

#include <linux/io.h>

#include <linux/delay.h>

static int gMajor; /* major number of device */

static struct class *dma_tm_class;

u32 *wbuf; /* source buffer */

u32 *rbuf; /* destinationn buffer */

struct dma_chan *dma_m2m_chan; /* our dma channel */

struct completion dma_m2m_ok; /* completion variable used in the DMA

callback */

#define SDMA_BUF_SIZE 1024

Let us define the filter function. When one requests a DMA channel, the controller driver
may perform a lookup in a list of channels (which it has). For fine-grained lookup, one can
provide a callback method that will be called on each channel found. It is then up to the
callback to choose the suitable channel to use:

static bool dma_m2m_filter(struct dma_chan *chan, void *param)

{

 if (!imx_dma_is_general_purpose(chan))

DMA – Direct Memory Access

[326]

 return false;

 chan->private = param;

 return true;

}

imx_dma_is_general_purpose is a special function that checks the controller driver's
name. The open function will allocate the buffer and request the DMA channel, given our
filter function as callback:

int sdma_open(struct inode * inode, struct file * filp)

{

 dma_cap_mask_t dma_m2m_mask;

 struct imx_dma_data m2m_dma_data = {0};

 init_completion(&dma_m2m_ok);

 dma_cap_zero(dma_m2m_mask);

 dma_cap_set(DMA_MEMCPY, dma_m2m_mask); /* Set channel capacities */

 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY; /* choose the dma

device type. This is proper to i.MX */

 m2m_dma_data.priority = DMA_PRIO_HIGH; /* we need high priority */

 dma_m2m_chan = dma_request_channel(dma_m2m_mask, dma_m2m_filter,

&m2m_dma_data);

 if (!dma_m2m_chan) {

 printk("Error opening the SDMA memory to memory channel\n");

 return -EINVAL;

 }

 wbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);

 if(!wbuf) {

 printk("error wbuf !!!!!!!!!!!\n");

 return -1;

 }

 rbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);

 if(!rbuf) {

 printk("error rbuf !!!!!!!!!!!\n");

 return -1;

 }

 return 0;

}

DMA – Direct Memory Access

[327]

The release function simply does the reverse of the open function; it frees the buffer and
releases the DMA channel:

int sdma_release(struct inode * inode, struct file * filp)

{

 dma_release_channel(dma_m2m_chan);

 dma_m2m_chan = NULL;

 kfree(wbuf);

 kfree(rbuf);

 return 0;

}

In the read function, we just compare the source and destination buffer and inform the user
about the result.

ssize_t sdma_read (struct file *filp, char __user * buf,

size_t count, loff_t * offset)

{

 int i;

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {

 if (*(rbuf+i) != *(wbuf+i)) {

 printk("Single DMA buffer copy falled!,r=%x,w=%x,%d\n",

*(rbuf+i), *(wbuf+i), i);

 return 0;

 }

 }

 printk("buffer copy passed!\n");

 return 0;

}

We use completion in order to get notified (woken up) when the transaction has terminated.
This callback is called after our transaction has finished and sets our completion variable to
the complete state:

static void dma_m2m_callback(void *data)

{

 printk("in %s\n",__func__);

 complete(&dma_m2m_ok);

 return ;

}

DMA – Direct Memory Access

[328]

In the write function, we fill our source buffer with the data, perform DMA mapping in
order to get physical addresses that correspond to our source and destination buffer, and
call device_prep_dma_memcpy to get a transaction descriptor. That transaction descriptor
is then submitted to the DMA engine with dmaengine_submit, which does not perform
our transaction yet. It is only after we have called dma_async_issue_pending on our
DMA channel, that our pending transaction will be processed:

ssize_t sdma_write(struct file * filp, const char __user * buf,

 size_t count, loff_t * offset)

{

 u32 i;

 struct dma_slave_config dma_m2m_config = {0};

 struct dma_async_tx_descriptor *dma_m2m_desc; /* transaction descriptor

*/

 dma_addr_t dma_src, dma_dst;

 /* No copy_from_user, we just fill the source buffer with predefined

data */

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {

 *(wbuf + i) = 0x56565656;

 }

 dma_m2m_config.direction = DMA_MEM_TO_MEM;

 dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

 dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config);

 dma_src = dma_map_single(NULL, wbuf, SDMA_BUF_SIZE, DMA_TO_DEVICE);

 dma_dst = dma_map_single(NULL, rbuf, SDMA_BUF_SIZE, DMA_FROM_DEVICE);

 dma_m2m_desc =

dma_m2m_chan->device->device_prep_dma_memcpy(dma_m2m_chan, dma_dst,

dma_src, SDMA_BUF_SIZE,0);

 if (!dma_m2m_desc)

 printk("prep error!!\n");

 dma_m2m_desc->callback = dma_m2m_callback;

 dmaengine_submit(dma_m2m_desc);

 dma_async_issue_pending(dma_m2m_chan);

 wait_for_completion(&dma_m2m_ok);

 dma_unmap_single(NULL, dma_src, SDMA_BUF_SIZE, DMA_TO_DEVICE);

 dma_unmap_single(NULL, dma_dst, SDMA_BUF_SIZE, DMA_FROM_DEVICE);

 return 0;

}

struct file_operations dma_fops = {

 open: sdma_open,

 release: sdma_release,

 read: sdma_read,

DMA – Direct Memory Access

[329]

 write: sdma_write,

};

The full code is available in the repository of the book: chapter-12/imx-sdma/imx-
sdma-single.c. There is also a module with which to perform the same task, but using
scatter/gather mapping: chapter-12/imx-sdma/imx-sdma-scatter-gather.c.

DMA DT binding
DT binding for the DMA channel depends on the DMA controller node, which is SoC
dependent, and some parameters (such as DMA cells) may vary from one SoC to another.
This example only focuses on the i.MX SDMA controller, which one can find in the kernel
source, at Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt.

Consumer binding
According to the SDMA event-mapping table, the following code shows the DMA request
signals for peripherals in i.MX 6Dual/ 6Quad:

uart1: serial@02020000 {

 compatible = "fsl,imx6sx-uart", "fsl,imx21-uart";

 reg = <0x02020000 0x4000>;

 interrupts = <GIC_SPI 26 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&clks IMX6SX_CLK_UART_IPG>,

 <&clks IMX6SX_CLK_UART_SERIAL>;

 clock-names = "ipg", "per";

 dmas = <&sdma 25 4 0>, <&sdma 26 4 0>;

 dma-names = "rx", "tx";

 status = "disabled";

};

The second cells (25 and 26) in the DMA property correspond to the DMA request/event
ID. Those values come from the SoC manuals (i.MX53 in our case). Please have a look at
https:/​/​community.​nxp.​com/​servlet/​JiveServlet/​download/​614186-​1-​373516/​iMX6_
Firmware_​Guide.​pdf and the Linux reference manual at
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373515/i.MX_Lin

ux_Reference_Manual.pdf.

https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373516/iMX6_Firmware_Guide.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373515/i.MX_Linux_Reference_Manual.pdf
https://community.nxp.com/servlet/JiveServlet/download/614186-1-373515/i.MX_Linux_Reference_Manual.pdf

DMA – Direct Memory Access

[330]

The third cell indicates the priority to use. The driver code to request a specified parameter
is defined next. One can find the complete code in drivers/tty/serial/imx.c in the
kernel source tree:

static int imx_uart_dma_init(struct imx_port *sport)

{

 struct dma_slave_config slave_config = {};

 struct device *dev = sport->port.dev;

 int ret;

 /* Prepare for RX : */

 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");

 if (!sport->dma_chan_rx) {

 [...] /* cannot get the DMA channel. handle error */

 }

 slave_config.direction = DMA_DEV_TO_MEM;

 slave_config.src_addr = sport->port.mapbase + URXD0;

 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;

 /* one byte less than the watermark level to enable the aging timer */

 slave_config.src_maxburst = RXTL_DMA - 1;

 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);

 if (ret) {

 [...] /* handle error */

 }

 sport->rx_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);

 if (!sport->rx_buf) {

 [...] /* handle error */

 }

 /* Prepare for TX : */

 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");

 if (!sport->dma_chan_tx) {

 [...] /* cannot get the DMA channel. handle error */

 }

 slave_config.direction = DMA_MEM_TO_DEV;

 slave_config.dst_addr = sport->port.mapbase + URTX0;

 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;

 slave_config.dst_maxburst = TXTL_DMA;

 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);

 if (ret) {

 [...] /* handle error */

 }

 [...]

}

DMA – Direct Memory Access

[331]

The magic call here is the dma_request_slave_channel() function, which will parse the
device node (in the DT) using of_dma_request_slave_channel() to gather channel
settings, according to the DMA name (refer to the named resource in Chapter 6, The
Concept of Device Tree).

Summary
DMA is a feature that one finds in many modern CPUs. This chapter gives you the
necessary steps to get the most out of this device, using the kernel DMA mapping and DMA
engine APIs. After this chapter, I have no doubt you will be able to set up at least a
memory-to-memory DMA transfer. One can find further information at
Documentation/dmaengine/, in the kernel source tree. Therefore, the next chapter deals with
an entirely different subject—the Linux device model.

13
Linux Device Model

Until version 2.5, the kernel had no way to describe and manage objects, and the code
reusability was not as enhanced as it is now. In other words, there was no device topology
nor organization. There was no information on subsystem relationships nor on how the
system is put together. Then came the Linux Device Model (LDM), which introduced:

The concept of class, to group devices of the same type or devices that expose the
same functionalities (for example, mice and keyboards are both input devices).
Communication with the user space through a virtual filesystem called sysfs, in
order to let user space manage and enumerate devices and the properties they
expose.
Management of object life cycle, using reference counting (heavily used in
managed resources).
Power management in order to handle the order in which devices should shut
down.
The reusability of the code. Classes and frameworks expose interfaces, behaving
like contract that any driver that registers with them must respect.
LDM brought an Object Oriented (OO)-like programming style in the kernel.

In this chapter, we will take advantage of LDM and export some properties to the user
space through the sysfs filesystem.

In this chapter, we will cover the following topics:

Introducing LDM data structures (Driver, Device, Bus)
Gathering kernel objects by type
Dealing with the kernel sysfs interface

Linux Device Model

[333]

LDM data structures
The goal is to build a complete DT that will map each physical device present on the
system, and introduce their hierarchy. One common and generic structure has been created
to represent any object that could be a part of the device model. The upper level of LDM
relies on the bus represented in the kernel as an instance of struct bus_type; device
driver, represented by a struct device_driver structure, and device, which is the last
element represented as an instance of the struct device structure. In this section, we will
design a bus driver packt bus, in order to get deep into LDM data structures and
mechanisms.

The bus
A bus is a channel link between devices and processors. The hardware entity that manages
the bus and exports its protocol to devices is called the bus controller. For example, the USB
controller provides USB support. The I2C controller provides I2C bus support. Therefore,
the bus controller, being a device on its own, must be registered like any device. It will be
the parent of devices that need to sit on the bus. In other words, every device sitting on the
bus must have their parent field pointing to the bus device. A bus is represented in the
kernel by the struct bus_type structure:

struct bus_type {

 const char *name;

 const char *dev_name;

 struct device *dev_root;

 struct device_attribute *dev_attrs; /* use dev_groups instead */

 const struct attribute_group **bus_groups;

 const struct attribute_group **dev_groups;

 const struct attribute_group **drv_groups;

 int (*match)(struct device *dev, struct device_driver *drv);

 int (*probe)(struct device *dev);

 int (*remove)(struct device *dev);

 void (*shutdown)(struct device *dev);

 int (*suspend)(struct device *dev, pm_message_t state);

 int (*resume)(struct device *dev);

 const struct dev_pm_ops *pm;

 struct subsys_private *p;

 struct lock_class_key lock_key;

};

Linux Device Model

[334]

The following are the meanings of elements in the structure:

match: This is a callback, called whenever a new device or driver is added to the
bus. The callback must be smart enough and should return a nonzero value when
there is a match between a device and a driver, both given as parameters. The
main purpose of a match callback is to allow a bus to determine if a particular
device can be handled by a given driver or the other logic, if the given driver
supports a given device. Most of the time, the verification is done by a simple
string comparison (device and driver name, of table and DT compatible
property). For enumerated devices (PCI, USB), the verification is done by
comparing the device IDs supported by the driver with the device ID of the given
device, without sacrificing bus-specific functionality.
probe: This is a callback when a new device or driver is added to the bus, after
the match has occurred. This function is responsible for allocating the specific bus
device structure, and call the given driver's probe function, which is supposed to
manage the device (allocated earlier).
remove: This is called when a device is to removed from the bus.
suspend: This is a method called when a device on the bus needs to be put into
sleep mode.
resume: This is called when a device on the bus has to be brought out of sleep
mode.
pm: This is a set of power management operations of the bus, which will call the
specific device driver's pm-ops.
drv_groups: This is a pointer to a list (array) of struct attribute_group
elements, each of which has a pointer to a list (array) of struct attribute
elements. It represents the default attributes of the device drivers on the bus.
Attributes passed to this field will be given to every driver registered with the
bus. Those attributes can be found in the driver's directory in /sys/bus/<bus-
name>/drivers/<driver-name>.
dev_groups: This represents the default attributes of the devices on the bus.
Attributes passed (through the list/array of the struct attribute_group
elements) to this field will be given to every device registered with the bus. Those
attributes can be found in the device directory in /sys/bus/<bus-
name>/devices/<device-name>.

bus_group: This holds the set (group) of default attributes added automatically
when the bus is registered with the core.

Linux Device Model

[335]

Apart from defining a bus_type, the bus controller driver must define a bus-specific driver
structure that extends the generic struct device_driver, and a bus-specific device
structure that extends the generic struct device structure, both part of the device model
core. The bus drivers must also allocate a bus-specific device structure for each physical
device discovered when probing, and is responsible for initializing the bus and parent
fields of the device and registering the device with the LDM core. Those fields must point to
the bus device and the bus_type structures defined in the bus driver. The LDM core uses
that to build the device hierarchy and initialize the other fields.

In our example, the following are two helper macros to get the packt device and the packt
driver, given a generic struct device and struct driver:

#define to_packt_driver(d) container_of(d, struct packt_driver, driver)

#define to_packt_device(d) container_of(d, struct packt_device, dev)

And then comes the structure used to identify a packt device:

struct packt_device_id {

 char name[PACKT_NAME_SIZE];

 kernel_ulong_t driver_data; /* Data private to the driver */

};

The following are packt-specific devices and driver structures:

/*

 * Bus specific device structure

 * This is what a packt device structure looks like

 */

struct packt_device {

 struct module *owner;

 unsigned char name[30];

 unsigned long price;

 struct device dev;

};

/*

 * Bus specific driver structure

 * This is what a packt driver structure looks like

 * You should provide your device's probe and remove function.

 * may be release too

 */

struct packt_driver {

 int (*probe)(struct packt_device *packt);

 int (*remove)(struct packt_device *packt);

 void (*shutdown)(struct packt_device *packt);

};

Linux Device Model

[336]

Each bus internally manages two important lists; the list of devices added and sitting on it,
and the list of driver registered with it. Whenever you add/register or remove/unregister a
device/driver to/from the bus, the corresponding list is updated with the new entry. The
bus driver must provide helper functions to register/unregister device drivers that can
handle devices on that bus, as well as helper functions to register/unregister devices sitting
on the bus. These helper functions always wrap the generic functions provided by the LDM
core, which are driver_register(), device_register(), driver_unregister, and
device_unregister().

/*

 * Now let us write and export symbols that people writing

 * drivers for packt devices must use.

 */

int packt_register_driver(struct packt_driver *driver)

{

 driver->driver.bus = &packt_bus_type;

 return driver_register(&driver->driver);

}

EXPORT_SYMBOL(packt_register_driver);

void packt_unregister_driver(struct packt_driver *driver)

{

 driver_unregister(&driver->driver);

}

EXPORT_SYMBOL(packt_unregister_driver);

int packt_device_register(struct packt_device *packt)

{

 return device_register(&packt->dev);

}

EXPORT_SYMBOL(packt_device_register);

void packt_unregister_device(struct packt_device *packt)

{

 device_unregister(&packt->dev);

}

EXPORT_SYMBOL(packt_device_unregister);

Linux Device Model

[337]

The function used to allocate packt devices is as follows. One must use this to create an
instance of any physical device sitting on the bus:

/*

 * This function allocate a bus specific device structure

 * One must call packt_device_register to register

 * the device with the bus

 */

struct packt_device * packt_device_alloc(const char *name, int id)

{

 struct packt_device *packt_dev;

 int status;

 packt_dev = kzalloc(sizeof *packt_dev, GFP_KERNEL);

 if (!packt_dev)

 return NULL;

 /* new devices on the bus are son of the bus device */

 strcpy(packt_dev->name, name);

 packt_dev->dev.id = id;

 dev_dbg(&packt_dev->dev,

 "device [%s] registered with packt bus\n", packt_dev->name);

 return packt_dev;

out_err:

 dev_err(&adap->dev, "Failed to register packt client %s\n",

packt_dev->name);

 kfree(packt_dev);

 return NULL;

}

EXPORT_SYMBOL_GPL(packt_device_alloc);

int packt_device_register(struct packt_device *packt)

{

 packt->dev.parent = &packt_bus;

 packt->dev.bus = &packt_bus_type;

 return device_register(&packt->dev);

}

EXPORT_SYMBOL(packt_device_register);

Linux Device Model

[338]

Bus registration
The bus controller is a device itself, and in 99% of cases buses are platform devices (even
buses that offer enumeration). For example, PCI controller is a platform device, so is its
respective driver. One must use the bus_register(struct *bus_type) function in
order to register a bus with the kernel. The packt bus structure looks like this:

/*

 * This is our bus structure

 */

struct bus_type packt_bus_type = {

 .name = "packt",

 .match = packt_device_match,

 .probe = packt_device_probe,

 .remove = packt_device_remove,

 .shutdown = packt_device_shutdown,

};

The bus controller is a device itself, it has to be registered with the kernel, and will be used
as a parent of the device siting on the bus. This is done in the bus controller's probe or init
function. In the case of the packt bus, the code would be as follows:

/*

 * Bus device, the master.

 *

 */

struct device packt_bus = {

 .release = packt_bus_release,

 .parent = NULL, /* Root device, no parent needed */

};

static int __init packt_init(void)

{

 int status;

 status = bus_register(&packt_bus_type);

 if (status < 0)

 goto err0;

 status = class_register(&packt_master_class);

 if (status < 0)

 goto err1;

 /*

 * After this call, the new bus device will appear

 * under /sys/devices in sysfs. Any devices added to this

 * bus will shows up under /sys/devices/packt-0/.

 */

Linux Device Model

[339]

 device_register(&packt_bus);

 return 0;

err1:

 bus_unregister(&packt_bus_type);

err0:

 return status;

}

When a device is registered by the bus controller driver, the parent member of the device
must point to the bus controller device and its bus property must point to the bus type to
build the physical DT. To register a packt device, one must call packt_device_register,
given as an argument allocated with packt_device_alloc:

int packt_device_register(struct packt_device *packt)

{

 packt->dev.parent = &packt_bus;

 packt->dev.bus = &packt_bus_type;

 return device_register(&packt->dev);

}

EXPORT_SYMBOL(packt_device_register);

Device driver
A global device hierarchy allows each device in the system to be represented in a common
way. This allows the core to easily walk the DT to create such things as properly ordered
power management transitions:

struct device_driver {

 const char *name;

 struct bus_type *bus;

 struct module *owner;

 const struct of_device_id *of_match_table;

 const struct acpi_device_id *acpi_match_table;

 int (*probe) (struct device *dev);

 int (*remove) (struct device *dev);

 void (*shutdown) (struct device *dev);

 int (*suspend) (struct device *dev, pm_message_t state);

 int (*resume) (struct device *dev);

 const struct attribute_group **groups;

 const struct dev_pm_ops *pm;

};

Linux Device Model

[340]

struct device_driver defines a simple set of operations for the core to perform these
actions on each device:

* name represents the driver's name. It can be used for matching, by comparing
with the device name.
* bus represents the bus the driver sits on. The bus driver must fill this field.
module represents the module owning the driver. In 99% of cases, one should set
this field to THIS_MODULE.
of_match_table is a pointer to the array of struct of_device_id. The
struct of_device_id structure is used to perform OF match through a special
file called DT, passed to the kernel during the boot process:

struct of_device_id {

 char compatible[128];

 const void *data;

};

suspend and resume callbacks provide power management functionality. The
remove callback is called when the device is physically removed from the system,
or when its reference count reaches 0. The remove callback is also called during
system reboot.
probe is the probe callback that runs when attempting to bind a driver to a
device. The bus driver is in charge of calling the device driver's probe function.
group is a pointer to a list (array) of struct attribute_group, used as a
default attribute for the driver. Use this method instead of creating an attribute
separately.

Device driver registration
driver_register() is the low-level function used to register a device driver with the bus.
It adds the driver to the bus's list of drivers. When a device driver is registered with the bus,
the core walks through the bus's list of devices and calls the bus's match callback for each
device that does not have a driver associated with it in order to find out if there are any
devices that the driver can handle.

When a match occurs, the device and the device driver are bound together. The process of
associating a device with a device driver is called binding.

Linux Device Model

[341]

Now back to the registration of drivers with our packt bus, one has to use
packt_register_driver(struct packt_driver *driver), which is a wrapper
around driver_register(). The *driver parameter must have been filled prior to
registering the packt driver. The LDM core provides helper functions for iterating over the
list of drivers registered with the bus:

int bus_for_each_drv(struct bus_type * bus,

 struct device_driver * start,

 void * data, int (*fn)(struct device_driver *,

 void *));

This helper iterates over the bus's list of drivers, and calls the fn callback for each driver in
the list.

Device
The struct device is the generic data structure used to describe and characterize each device
on the system, whether it is physical or not. It contains details about the physical attributes
of the device, and provides proper linkage information to build suitable device trees and
reference counting:

struct device {

 struct device *parent;

 struct kobject kobj;

 const struct device_type *type;

 struct bus_type *bus;

 struct device_driver *driver;

 void *platform_data;

 void *driver_data;

 struct device_node *of_node;

 struct class *class;

 const struct attribute_group **groups;

 void (*release)(struct device *dev);

};

* parent represents the device's parent, used to build device tree hierarchy.
When registered with a bus, the bus driver is responsible for setting this field
with the bus device.
* bus represents the bus the device sits on. The bus driver must fill this field.
* type identifies the device's type.

Linux Device Model

[342]

kobj is the kobject in handle reference counting and device model support.
* of_node is a pointer to the OF (DT) node associated with the device. It is up to
the bus driver to set this field.
platform_data is a pointer to the platform data specific to the device. Usually
declared in a board-specific file during device provisioning.
driver_data is a pointer to private data for the driver.
class is a pointer to the class that the device belongs to.
* group is a pointer to a list (array) of struct attribute_group, used as the
default attribute for the device. Use this method instead of creating the attribute
separately.
release is a callback called when the device reference count reaches zero. The
bus has the responsibility of setting this field. The packt bus driver shows you
how to do this.

Device registration
device_register is the function provided by the LDM core to register a device with the
bus. After this call, the bus list of drivers is iterated over to find the driver that supports this
device and then this device is added to the bus's list of devices. device_register()
internally calls device_add():

int device_add(struct device *dev)

{

 [...]

 bus_probe_device(dev);

 if (parent)

 klist_add_tail(&dev->p->knode_parent,

 &parent->p->klist_children);

 [...]

}

The helper function provided by the kernel to iterate over the bus's list of devices is
bus_for_each_dev:

int bus_for_each_dev(struct bus_type * bus,

 struct device * start, void * data,

 int (*fn)(struct device *, void *));

Linux Device Model

[343]

Whenever a device is added, the core invokes the match method of the bus driver
(bus_type->match). If the match function says there is a driver for this device, the core
will invoke the probe function of the bus driver (bus_type->probe), given both device
and driver as parameters. It is then up to the bus driver to invoke the probe method of the
device's driver (driver->probe). For our packt bus driver, the function used to register a
device is packt_device_register(struct packt_device *packt), which internally
calls device_register, and where the parameter is a packt device allocated with
packt_device_alloc.

Deep inside LDM
The LDM under the wood relies on three important structures, which are kobject,
kobj_type, and kset. Let us see how each of these structures are involved in the device
model.

kobject structure
kobject is the core of the device model, running behind the scenes. It brings an OO-like
programming style to the kernel, and is mainly used for reference counting and to expose
devices hierarchies and relationships between them. kobjects introduce the concept of
encapsulation of common object properties such as usage reference counts:

struct kobject {

 const char *name;

 struct list_head entry;

 struct kobject *parent;

 struct kset *kset;

 struct kobj_type *ktype;

 struct sysfs_dirent *sd;

 struct kref kref;

 /* Fields out of our interest have been removed */

};

name points to the name of this kobject. One can change this using the
kobject_set_name(struct kobject *kobj, const char *name)

function.
parent is a pointer to this kobject's parent. It is used to build a hierarchy to
describe the relationship between objects.
sd points to a struct sysfs_dirent structure that represents this kobject in
sysfs inode inside this structure for sysfs.

Linux Device Model

[344]

kref provides reference counting on the kobject.
ktype describes the object, and kset tells us which set (group) of objects this
object belongs to.

Each structure that embeds a kobject is embedded and receives the standardized functions
that kobjects provide. The embedded kobject will enable the structure to become a part of
an object hierarchy.

The container_of macro is used to get a pointer on the object to which the kobject
belongs. Every kernel device directly or indirectly embeds a kobject property. Prior to be
added to the system, the kobject must be allocated using kobject_create() function,
which will return an empty kobject that one must initialize with kobj_init(), given as a
parameter the allocated and non-initialized kobject pointer, along with its kobj_type
pointer:

struct kobject *kobject_create(void)

void kobject_init(struct kobject *kobj, struct kobj_type *ktype)

The kobject_add() function is used to add and link a kobject to the system, at the same
time creating its directory according to its hierarchy, along with its default attributes. The
reverse function is kobject_del():

int kobject_add(struct kobject *kobj, struct kobject *parent,

 const char *fmt, ...);

The reverse function of both kobject_create and kobject_add is kobject_put. In the
source provided with the book, the excerpt to tie a kobject to the system is:

/* Somewhere */

static struct kobject *mykobj;

mykobj = kobject_create();

 if (mykobj) {

 kobject_init(mykobj, &mytype);

 if (kobject_add(mykobj, NULL, "%s", "hello")) {

 err = -1;

 printk("ldm: kobject_add() failed\n");

 kobject_put(mykobj);

 mykobj = NULL;

 }

 err = 0;

 }

Linux Device Model

[345]

One could have used kobject_create_and_add, which internally calls kobject_create
and kobject_add. The following excerpt from drivers/base/core.c shows how to use
it:

static struct kobject * class_kobj = NULL;

static struct kobject * devices_kobj = NULL;

/* Create /sys/class */

class_kobj = kobject_create_and_add("class", NULL);

if (!class_kobj) {

 return -ENOMEM;

}

/* Create /sys/devices */

devices_kobj = kobject_create_and_add("devices", NULL);

if (!devices_kobj) {

 return -ENOMEM;

}

If a kobject has a NULL parent, then kobject_add sets parent to kset. If
both are NULL, object becomes a child-member of the top-level sys
directory

kobj_type
A struct kobj_type structure describes the behavior of kobjects. A kobj_type structure
describes the type of object that embeds a kobject by means of ktype field. Every structure
that embeds a kobject needs a corresponding kobj_type, which will control what happens
when the kobject is created and destroyed, and when attributes are read or written to. Every
kobject has a field of the type struct kobj_type, which stands for kernel object type:

struct kobj_type {

 void (*release)(struct kobject *);

 const struct sysfs_ops sysfs_ops;

 struct attribute **default_attrs;

};

Linux Device Model

[346]

A struct kobj_type structure allows kernel objects to share common operations
(sysfs_ops), whether those objects are functionally related or not. Fields of that structure
are meaningful enough. release is a callback called by the kobject_put() function
whenever your object needs to be freed. You must free memory held by your object here.
One can use the container_of macro to get a pointer to the object. The sysfs_ops field
points to sysfs operations, whereas default_attrs defines the default attributes
associated with this kobject. sysfs_ops is a set of callback (sysfs operation) called when a
sysfs attribute is accessed. default_attrs is a pointer to a list of struct attribute
elements that will be used as default attributes for each object of this type:

struct sysfs_ops {

 ssize_t (*show)(struct kobject *kobj,

 struct attribute *attr, char *buf);

 ssize_t (*store)(struct kobject *kobj,

 struct attribute *attr,const char *buf,

 size_t size);

};

show is the callback called when one reads an attribute of any kobject which has this
kobj_type. The buffer size is always PAGE_SIZE in length, even if the value to show is a
simple char. One should set the value of buf (using scnprintf), and return the size (in
bytes) of data actually written into the buffer on success or negative error on failure. store
is called for write purposes. Its buf parameter is at most PAGE_SIZE but can be smaller. It
returns the size (in bytes) of data actually read from buffer on success or negative error on
failure (or if it receives an unwanted value). One can use get_ktype to get the kobj_type
of a given kobject:

struct kobj_type *get_ktype(struct kobject *kobj);

In the example in the book, our k_type variable represents our kobject's type:

static struct sysfs_ops s_ops = {

 .show = show,

 .store = store,

};

static struct kobj_type k_type = {

 .sysfs_ops = &s_ops,

 .default_attrs = d_attrs,

};

Linux Device Model

[347]

Here, the show and store callbacks are defined as follows:

static ssize_t show(struct kobject *kobj, struct attribute *attr, char

*buf)

{

 struct d_attr *da = container_of(attr, struct d_attr, attr);

 printk("LDM show: called for (%s) attr\n", da->attr.name);

 return scnprintf(buf, PAGE_SIZE,

 "%s: %d\n", da->attr.name, da->value);

}

static ssize_t store(struct kobject *kobj, struct attribute *attr, const

char *buf, size_t len)

{

 struct d_attr *da = container_of(attr, struct d_attr, attr);

 sscanf(buf, "%d", &da->value);

 printk("LDM store: %s = %d\n", da->attr.name, da->value);

 return sizeof(int);

}

ksets
Kernel object sets (ksets) mainly group related kernel objects together. ksets are collection
of kobjects. In other words, a kset gathers related kobjects into a single place, for example,
all block devices:

struct kset {

 struct list_head list;

 spinlock_t list_lock;

 struct kobject kobj;

 };

list is a linked list of all kobjects in the kset
list_lock is a spinlock protecting linked list access
kobj represents the base class for the set

Each registered (added to the system) kset corresponds to a sysfs directory. A kset can be
created and added using the kset_create_and_add() function, and removed with the
kset_unregister() function:

struct kset * kset_create_and_add(const char *name,

 const struct kset_uevent_ops *u,

 struct kobject *parent_kobj);

void kset_unregister (struct kset * k);

Linux Device Model

[348]

Adding a kobject to the set is as simple as specifying its kset field to the right kset:

static struct kobject foo_kobj, bar_kobj;

example_kset = kset_create_and_add("kset_example", NULL, kernel_kobj);

/*

 * since we have a kset for this kobject,

 * we need to set it before calling the kobject core.

 */

foo_kobj.kset = example_kset;

bar_kobj.kset = example_kset;

retval = kobject_init_and_add(&foo_kobj, &foo_ktype,

 NULL, "foo_name");

retval = kobject_init_and_add(&bar_kobj, &bar_ktype,

 NULL, "bar_name");

Now in the module exit function, after kobject and their attributes have been removed:

kset_unregister(example_kset);

Attribute
Attributes are sysfs files exported to the user space by kobjects. An attribute represents an
object property that can be readable, writable, or both, from the user space. That said, every
data structure that embeds a struct kobject can expose either default attributes provided by
the kobject itself (if any), or custom ones. In other words, attributes map kernel data to files
in sysfs.

An attribute definition looks like this:

struct attribute {

 char * name;

 struct module *owner;

 umode_t mode;

};

The kernel functions used to add/remove attributes from the filesystem are:

int sysfs_create_file(struct kobject * kobj,

 const struct attribute * attr);

void sysfs_remove_file(struct kobject * kobj,

 const struct attribute * attr);

Linux Device Model

[349]

Let us try to define two properties that we will export, each represented by an attribute:

struct d_attr {

 struct attribute attr;

 int value;

};

static struct d_attr foo = {

 .attr.name="foo",

 .attr.mode = 0644,

 .value = 0,

};

static struct d_attr bar = {

 .attr.name="bar",

 .attr.mode = 0644,

 .value = 0,

};

To create each enumerated attribute separately, we have to call the following:

sysfs_create_file(mykobj, &foo.attr);

sysfs_create_file(mykobj, &bar.attr);

A good place to start with attributes is samples/kobject/kobject-example.c in the
kernel source.

Attributes group
So far, we have seen how to individually add attributes and call (directly or indirectly
through a wrapper function such as device_create_file(), class_create_file(),
and so on) sysfs_create_file() on each of them. Why bother ourselves with multiple
calls if we can do it once? Here is where the attribute group comes in. It relies on the
struct attribute_group structure:

struct attribute_group {

 struct attribute **attrs;

};

Of course, we have removed fields that are not of interest. The attrs field is a pointer to
NULL terminated list of attributes. Each attribute group must be given a pointer to a
list/array of struct attribute elements. The group is just a helper wrapper that makes it
easier to manage multiple attributes.

Linux Device Model

[350]

The kernel functions used to add/remove group attributes to the filesystem are:

int sysfs_create_group(struct kobject *kobj,

 const struct attribute_group *grp)

void sysfs_remove_group(struct kobject * kobj,

 const struct attribute_group * grp)

The two preceding defined properties can be embedded in a struct attribute_group,
to make only one call to add both of them to the system:

static struct d_attr foo = {

 .attr.name="foo",

 .attr.mode = 0644,

 .value = 0,

};

static struct d_attr bar = {

 .attr.name="bar",

 .attr.mode = 0644,

 .value = 0,

};

/* attrs is a pointer to a list (array) of attributes */

static struct attribute * attrs [] =

{

 &foo.attr,

 &bar.attr,

 NULL,

};

static struct attribute_group my_attr_group = {

 .attrs = attrs,

};

The one and only function to call here is this:

sysfs_create_group(mykobj, &my_attr_group);

It is much better than making a call for each attribute.

Device model and sysfs
Sysfs is a non-persistent virtual filesystem that provides a global view of the system and
exposes the kernel object's hierarchy (topology) by means of their kobjects. Each kobjects
shows up as a directory, and files in a directory representing kernel variables, exported by
the related kobject. These files are called attributes, and can be read or written.

Linux Device Model

[351]

If any registered kobject creates a directory in sysfs, where the directory is created depends
on the kobject's parent (which is a kobject too). It is natural that directories are created as
subdirectories of the kobject's parent. This highlights internal object hierarchies to the user
space. Top-level directories in sysfs represent the common ancestors of object hierarchies,
that is, the subsystems the objects belong to.

Top-level sysfs directories can be found under the /sys/ directory:

 /sys$ tree -L 1
 ├── block
 ├── bus
 ├── class
 ├── dev
 ├── devices
 ├── firmware
 ├── fs
 ├── hypervisor
 ├── kernel
 ├── module
 └── power

block contains a directory per-block device on the system, each of which contains
subdirectories for partitions on the device. bus contains the registered bus on the system.
dev contains the registered device nodes in a raw way (no hierarchy), each being a symlink
to the real device in the /sys/devices directory. devices gives a view of the topology of
devices in the system. firmware shows a system-specific tree of low-level subsystems, such
as: ACPI, EFI, OF (DT). fs lists filesystems actually used on the system. kernel holds
kernel configuration options and status info. Modules is a list of loaded modules.

Each of these directories corresponds to a kobject, some of which are exported as kernel
symbols. These are:

kernel_kobj which corresponds to /sys/kernel
power_kobj for /sys/power
firmware_kobj which is for /sys/firmware, exported in the
drivers/base/firmware.c source file
hypervisor_kobj for /sys/hypervisor, exported in the
drivers/base/hypervisor.c

fs_kobj which corresponds to /sys/fs, exported in the fs/namespace.c file

Linux Device Model

[352]

However, class/, dev/, devices/, are created during the boot by the devices_init
function in drivers/base/core.c in kernel source, block/ is created in block/genhd.c,
and bus/ is created as a kset in drivers/base/bus.c.

When a kobject directory is added to sysfs (using kobject_add), where it is added depends
on the kobject's parent location. If its parent pointer is set, it is added as a subdirectory
inside the parent's directory. If the parent pointer is NULL, it is added as a subdirectory
inside kset->kobj. If neither parent nor kset fields are set, it maps to the root level
directory in sysfs (/sys).

One can create/remove symbolic links on existing objects (directories), using
sysfs_{create|remove}_link functions:

int sysfs_create_link(struct kobject * kobj,

 struct kobject * target, char * name);

void sysfs_remove_link(struct kobject * kobj, char * name);

This will allow an object to exist in more than one place. The create function will create a
symlink named name pointing to the target kobject sysfs entry. A well know example is
devices appearing in both /sys/bus and /sys/devices. Symbolic links created will be
persistent even after target removal. You have to know when the target is removed, and
then remove the corresponding symlink.

Sysfs files and attributes
Now we know that the default set of files are provided via the ktype field in kobjects and
ksets, through the default_attrs field of kobj_type. Default attributes will be sufficient
in most of the cases. But sometimes an instance of a ktype may need its own attributes to
provide data or functionality not shared by a more general ktype.

Just a recall, the low-level functions used to add/remove new attributes (or group of
attributes) on top of default set are:

int sysfs_create_file(struct kobject *kobj,

 const struct attribute *attr);

void sysfs_remove_file(struct kobject *kobj,

 const struct attribute *attr);

int sysfs_create_group(struct kobject *kobj,

 const struct attribute_group *grp);

void sysfs_remove_group(struct kobject * kobj,

 const struct attribute_group * grp);

Linux Device Model

[353]

Current interfaces
There are interface layers that currently exist in sysfs. Apart from creating your own ktype
or kobject to add your attributes, you can use ones that currently exist: device, driver, bus,
and class attributes. Their description are as follows:

Device attributes

Apart from default attributes provided by the kobject embedded in your device structure,
you can create custom ones. The structure used for this purpose is struct
device_attribute, which is nothing but a wrapping around the standard struct
attribute, and a set of callbacks to show/store the value of the attribute:

struct device_attribute {

 struct attribute attr;

 ssize_t (*show)(struct device *dev,

 struct device_attribute *attr,

 char *buf);

 ssize_t (*store)(struct device *dev,

 struct device_attribute *attr,

 const char *buf, size_t count);

};

Their declaration is done through the DEVICE_ATTR macro:

DEVICE_ATTR(_name, _mode, _show, _store);

Whenever you declare a device attribute using DEVICE_ATTR, the prefix dev_attr_ is
added to the attribute name. For example, if you declare an attribute with the _name
parameter set to foo, the attribute will be accessible through the dev_attr_foo variable
name.

To understand why, let us see how the DEVICE_ATTR macro is defined in
include/linux/device.h:

#define DEVICE_ATTR(_name, _mode, _show, _store) \

 struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show,

_store)

Finally, you can add/remove those using the device_create_file and
device_remove_file functions:

int device_create_file(struct device *dev,

 const struct device_attribute * attr);

void device_remove_file(struct device *dev,

 const struct device_attribute * attr);

Linux Device Model

[354]

The following sample is a demonstration of how to put it all together:

static ssize_t foo_show(struct device *child,

 struct device_attribute *attr, char *buf)

{

 return sprintf(buf, "%d\n", foo_value);

}

static ssize_t bar_show(struct device *child,

 struct device_attribute *attr, char *buf)

{

 return sprintf(buf, "%d\n", bar_value);

}

Here are the static declarations of the attribute:

static DEVICE_ATTR(foo, 0644, foo_show, NULL);

static DEVICE_ATTR(bar, 0644, bar_show, NULL);

The following code shows how to actually create files on the system:

if (device_create_file(dev, &dev_attr_foo) != 0)

 /* handle error */

if (device_create_file(dev, &dev_attr_bar) != 0)

 /* handle error*/

For cleanup, the attribute removal is done in the remove function as follows:

device_remove_file(wm->dev, &dev_attr_foo);

device_remove_file(wm->dev, &dev_attr_bar);

You may wonder how and why we used to define the same set of store/show callbacks for
all attributes of the same kobject/ktype, and now, we use a custom one for each attribute.
The first reason is because, the device subsystem defines its own attribute structure, which
wraps the standard one, and secondly, instead of showing/storing the value of the attribute,
it uses the container_of macro to extract the struct device_attribute giving a
generic struct attribute, and then executes the show/store callback depending on the
user action. The following is the excerpt from drivers/base/core.c, showing
sysfs_ops of the device kobject:

static ssize_t dev_attr_show(struct kobject *kobj,

 struct attribute *attr,

 char *buf)

{

 struct device_attribute *dev_attr = to_dev_attr(attr);

 struct device *dev = kobj_to_dev(kobj);

 ssize_t ret = -EIO;

Linux Device Model

[355]

 if (dev_attr->show)

 ret = dev_attr->show(dev, dev_attr, buf);

 if (ret >= (ssize_t)PAGE_SIZE) {

 print_symbol("dev_attr_show: %s returned bad count\n",

 (unsigned long)dev_attr->show);

 }

 return ret;

}

static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,

 const char *buf, size_t count)

{

 struct device_attribute *dev_attr = to_dev_attr(attr);

 struct device *dev = kobj_to_dev(kobj);

 ssize_t ret = -EIO;

 if (dev_attr->store)

 ret = dev_attr->store(dev, dev_attr, buf, count);

 return ret;

}

static const struct sysfs_ops dev_sysfs_ops = {

 .show = dev_attr_show,

 .store = dev_attr_store,

};

The principle is the same for bus (in drivers/base/bus.c), driver (in
drivers/base/bus.c), and class (in drivers/base/class.c) attributes. They use the
container_of macro to extract their specific attribute structure, and then call the
show/store callback embedded in it.

Bus attributes

It relies on the struct bus_attribute structure:

struct bus_attribute {

 struct attribute attr;

 ssize_t (*show)(struct bus_type *, char * buf);

 ssize_t (*store)(struct bus_type *, const char * buf, size_t count);

};

Linux Device Model

[356]

Bus attributes are declared using the BUS_ATTR macro:

BUS_ATTR(_name, _mode, _show, _store)

Any bus attribute declared using BUS_ATTR will have the prefix bus_attr_ added to the
attribute variable name:

#define BUS_ATTR(_name, _mode, _show, _store) \

struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)

They are created/removed using bus_{create|remove}_file functions:

int bus_create_file(struct bus_type *, struct bus_attribute *);

void bus_remove_file(struct bus_type *, struct bus_attribute *);

Device drivers attributes

The structure used is struct driver_attribute:

struct driver_attribute {

 struct attribute attr;

 ssize_t (*show)(struct device_driver *, char * buf);

 ssize_t (*store)(struct device_driver *, const char * buf,

 size_t count);

};

The declaration relies on the DRIVER_ATTR macro, which will prefix the attribute variable
name with driver_attr_:

DRIVER_ATTR(_name, _mode, _show, _store)

The macro definition is:

#define DRIVER_ATTR(_name, _mode, _show, _store) \

struct driver_attribute driver_attr_##_name = __ATTR(_name, _mode, _show,

_store)

Creation/removal relies on driver_{create|remove}_file functions:

int driver_create_file(struct device_driver *,

 const struct driver_attribute *);

void driver_remove_file(struct device_driver *,

 const struct driver_attribute *);

Linux Device Model

[357]

Class attributes

The struct class_attribute is the base structure:

struct class_attribute {

 struct attribute attr;

 ssize_t (*show)(struct device_driver *, char * buf);

 ssize_t (*store)(struct device_driver *, const char * buf,

 size_t count);

};

The declaration of a class attribute relies on CLASS_ATTR:

CLASS_ATTR(_name, _mode, _show, _store)

As the macro's definition shows, any class attribute declared with CLASS_ATTR will have
the prefix class_attr_ added to the attribute variable name:

#define CLASS_ATTR(_name, _mode, _show, _store) \

struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show,

_store)

Finally, file creation and removal is done with the class_{create|remove}_file
functions:

int class_create_file(struct class *class,

 const struct class_attribute *attr);

void class_remove_file(struct class *class,

 const struct class_attribute *attr);

Notice that device_create_file(), bus_create_file(),
driver_create_file(), and class_create_file() all make an
internal call to sysfs_create_file(). As they all are kernel objects, they
have a kobject embedded into their structure. That kobject is then
passed as a parameter to sysfs_create_file, as you can see as follows:

int device_create_file(struct device *dev,

 const struct device_attribute *attr)

{

 [...]

 error = sysfs_create_file(&dev->kobj, &attr->attr);

 [...]

}

int class_create_file(struct class *cls,

 const struct class_attribute *attr)

Linux Device Model

[358]

{

 [...]

 error =

 sysfs_create_file(&cls->p->class_subsys.kobj,

 &attr->attr);

 return error;

}

int bus_create_file(struct bus_type *bus,

 struct bus_attribute *attr)

{

 [...]

 error =

 sysfs_create_file(&bus->p->subsys.kobj,

 &attr->attr);

 [...]

}

Allow sysfs attribute files to be pollable
Here we will see how not to make CPU wasting polling to sense sysfs attributes data
availability. The idea is to use the poll or select system calls to wait for the attribute's
content to change. The patch to make sysfs attributes pollable was created by Neil Brown
and Greg Kroah-Hartman. The kobject manager (the driver which has access to the kobject)
must support notification to allow poll or select to return (be released) when the content
changes. The magic function that does the trick comes from the kernel side, and is
sysfs_notify():

void sysfs_notify(struct kobject *kobj, const char *dir,

 const char *attr)

If the dir parameter is non-NULL, it is used to find a subdirectory, which contains the
attribute (presumably created by sysfs_create_group). This has a cost of one int per
attribute, one wait_queuehead per kobject, one int per open file.

poll will return POLLERR|POLLPRI, and select will return the fd whether it is waiting for
read, write, or exceptions. The blocking poll is from the user's side. sysfs_notify()
should be called only after you adjust your kernel attribute value.

Think of the poll() (or select()) code as a subscriber to notice a
change in an attribute of interest, and sysfs_notify() as a publisher,
notifying subscribers of any changes.

Linux Device Model

[359]

The following is an excerpt of code provided with the book, which is the store function of
an attribute:

static ssize_t store(struct kobject *kobj, struct attribute *attr,

 const char *buf, size_t len)

{

 struct d_attr *da = container_of(attr, struct d_attr, attr);

 sscanf(buf, "%d", &da->value);

 printk("sysfs_foo store %s = %d\n", a->attr.name, a->value);

 if (strcmp(a->attr.name, "foo") == 0){

 foo.value = a->value;

 sysfs_notify(mykobj, NULL, "foo");

 }

 else if(strcmp(a->attr.name, "bar") == 0){

 bar.value = a->value;

 sysfs_notify(mykobj, NULL, "bar");

 }

 return sizeof(int);

}

The code from the user space must behave like this in order to sense the data change:

Open the file attributes.1.
Make a dummy read of all the contents.2.
Call poll requesting POLLERR|POLLPRI (select/exceptfds works too).3.
When poll (or select) returns (which indicates that a value has changed), read4.
the content of files whose data changed.
Close the files and go to the top of the loop.5.

When in doubt of a sysfs attribute being pollable, set a suitable timeout value. The user
space example is provided with the book sample.

Linux Device Model

[360]

Summary
Now you are familiar with the LDM concept and with its data structures (bus, class, device
drivers, and devices), including low-level data structures, which are kobject, kset,
kobj_types, and attributes (or group of those), how objects are represented within the
kernel (hence sysfs and devices topology) is not a secret anymore. You will be able to create
an attribute (or group), exposing your device or driver feature through sysfs. If the previous
topic seems clear to you, we will move to the next chapter 14, Pin Control and GPIO
Subsystem, which heavily uses the power of sysfs.

14
Pin Control and GPIO

Subsystem
Most embedded Linux driver and kernel engineers write using GPIOs or play with pins
multiplexing. By pins, I mean outgoing line of component. SoC does multiplex pins,
meaning that a pin may have several functions, for example, MX6QDL_PAD_SD3_DAT1 in
arch/arm/boot/dts/imx6dl-pinfunc.h can be either an SD3 data line 1, UART1's
cts/rts, Flexcan2's Rx, or normal GPIO.

The mechanism by which one choses the mode a pin should work on is called pin muxing.
The system responsible for is called the pin controller. In the second part of the chapter, we
will discuss the General Purpose Input Output (GPIO), which is a special function (mode)
in which a pin can operate.

In this chapter, we will:

Walk through the pin control subsystem, and see how one can declare their nodes
in DT
Explore both legacy integer-based GPIO interfaces, as well as the new descriptor-
based interface API
Deal with GPIO mapped to IRQ
Handle sysfs interfaces dedicated to GPIOs

Pin control subsystem
The Pin control (pinctrl) subsystem allows managing pin muxing. In the DT, devices that
need pins to be multiplexed in a certain way must declare the pin control configuration they
need.

Pin Control and GPIO Subsystem

[362]

The pinctrl subsystem provides:

Pin multiplexing, which allows for reusing the same pin for different purposes,
such as one pin being a UART TX pin, GPIO line, or HSI data line. Multiplexing
can affect groups of pins or individual pins.
Pin configuration, applying electronic properties of pins such as pull-up, pull-
down, driver strength, debounce period, and so on.

The purpose of this book is limited to using functions exported by the pin controller driver,
and does not not how to write a pin controller driver.

Pinctrl and the device tree
The pinctrl is nothing but a way to gather pins (not only GPIO), and pass them to the driver.
The pin controller driver is responsible for parsing pin descriptions in the DT and applying
their configuration in the chip. The driver usually needs a set of two nested nodes to
describe group of pins configurations. The first node describes the function of the group
(what purpose the group will be used for), the second holds the pins configuration.

How pin groups are assigned in the DT heavily depends on the platform, and thus the pin
controller driver. Every pin control state is given an integer ID starting at 0 and contiguous.
One can use a name property, which will be mapped on top of IDs, so that the same name
always points to the same ID.

Each client device's own binding determines the set of states that must be defined in its DT
node, and whether to define the set of state IDs that must be provided, or whether to define
the set of state names that must be provided. In any case, a pin configuration node can be
assigned to a device by means of two properties:

pinctrl-<ID>: This allows for giving the list of pinctrl configurations needed
for a certain state of the device. It is a list of phandles, each of which points to a
pin configuration node. These referenced pin configuration nodes must be child
nodes of the pin controller that they configure. Multiple entries may exist in this
list so that multiple pin controllers may be configured, or so that a state may be
built from multiple nodes for a single pin controller, each contributing part of the
overall configuration.
pinctrl-name: This allows for giving a name to each state in a list. List entry 0
defines the name for integer state ID 0, list entry 1 for state ID 1, and so on. The
state ID 0 is commonly given the name default. The list of standardized states can
be found in include/linux/pinctrl/pinctrl-state.h.

Pin Control and GPIO Subsystem

[363]

The following is an excerpt of DT, showing some device nodes, along with their
pin control nodes:

usdhc@0219c000 { /* uSDHC4 */

 non-removable;

 vmmc-supply = <®_3p3v>;

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_usdhc4_1>;

};

gpio-keys {

 compatible = "gpio-keys";

 pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_io_foo &pinctrl_io_bar>;

};

iomuxc@020e0000 {

 compatible = "fsl,imx6q-iomuxc";

 reg = <0x020e0000 0x4000>;

 /* shared pinctrl settings */

 usdhc4 { /* first node describing the function */

 pinctrl_usdhc4_1: usdhc4grp-1 { /* second node */

 fsl,pins = <

 MX6QDL_PAD_SD4_CMD__SD4_CMD 0x17059

 MX6QDL_PAD_SD4_CLK__SD4_CLK 0x10059

 MX6QDL_PAD_SD4_DAT0__SD4_DATA0 0x17059

 MX6QDL_PAD_SD4_DAT1__SD4_DATA1 0x17059

 MX6QDL_PAD_SD4_DAT2__SD4_DATA2 0x17059

 MX6QDL_PAD_SD4_DAT3__SD4_DATA3 0x17059

 MX6QDL_PAD_SD4_DAT4__SD4_DATA4 0x17059

 MX6QDL_PAD_SD4_DAT5__SD4_DATA5 0x17059

 MX6QDL_PAD_SD4_DAT6__SD4_DATA6 0x17059

 MX6QDL_PAD_SD4_DAT7__SD4_DATA7 0x17059

 >;

 };

 };

 [...]

 uart3 {

 pinctrl_uart3_1: uart3grp-1 {

 fsl,pins = <

 MX6QDL_PAD_EIM_D24__UART3_TX_DATA 0x1b0b1

 MX6QDL_PAD_EIM_D25__UART3_RX_DATA 0x1b0b1

 >;

 };

 };

 // GPIOs (Inputs)

Pin Control and GPIO Subsystem

[364]

 gpios {

 pinctrl_io_foo: pinctrl_io_foo {

 fsl,pins = <

 MX6QDL_PAD_DISP0_DAT15__GPIO5_IO09 0x1f059

 MX6QDL_PAD_DISP0_DAT13__GPIO5_IO07 0x1f059

 >;

 };

 pinctrl_io_bar: pinctrl_io_bar {

 fsl,pins = <

 MX6QDL_PAD_DISP0_DAT11__GPIO5_IO05 0x1f059

 MX6QDL_PAD_DISP0_DAT9__GPIO4_IO30 0x1f059

 MX6QDL_PAD_DISP0_DAT7__GPIO4_IO28 0x1f059

 MX6QDL_PAD_DISP0_DAT5__GPIO4_IO26 0x1f059

 >;

 };

 };

};

In the preceding example, a pin configuration is given in the form <PIN_FUNCTION>
<PIN_SETTING>. For example:

MX6QDL_PAD_DISP0_DAT15__GPIO5_IO09 0x80000000

MX6QDL_PAD_DISP0_DAT15__GPIO5_IO09 represents the pin function, which is GPIO in
this case, and 0x80000000 represents the pin settings.

For this line,

MX6QDL_PAD_EIM_D25__UART3_RX_DATA 0x1b0b1

MX6QDL_PAD_EIM_D25__UART3_RX_DATA represents the pin function, which is the RX line
of UART3, and 0x1b0b1 represent is settings.

The pin function is a macro whose value is meaningful for pin controller driver only. These
are generally defined in header files located in arch/<arch>/boot/dts/. If one uses a
UDOO quad, for example, which has an i.MX6 quad core (ARM), the pin function header
would be arch/arm/boot/dts/imx6q-pinfunc.h. The following is the macro
corresponding to the fifth line of the GPIO5 controller:

#define MX6QDL_PAD_DISP0_DAT11__GPIO5_IO05 0x19c 0x4b0 0x000 0x5 0x0

<PIN_SETTING> can be used to set up things like pull-ups, pull-downs, keepers, drive
strength, and so on. How it should be specified depends on the pin controller binding, and
the meaning of its value depends on the SoC data sheet, generally in the IOMUX section.
On i.MX6 IOMUXC, only lower than 17 bits are used for this purpose.

Pin Control and GPIO Subsystem

[365]

These preceding nodes are called from the corresponding driver-specific node. Moreover,
these pins are configured during corresponding driver initialization. Prior to selecting a pin
group state, one must get the pin control first using the pinctrl_get() function, call
pinctrl_lookup_state() in order to check whether the requested state exist or not, and
finally pinctrl_select_state() to apply the state.

The following is a sample that shows how to get a pincontrol and apply its default
configuration:

struct pinctrl *p;

struct pinctrl_state *s;

int ret;

p = pinctrl_get(dev);

if (IS_ERR(p))

 return p;

s = pinctrl_lookup_state(p, name);

if (IS_ERR(s)) {

 devm_pinctrl_put(p);

 return ERR_PTR(PTR_ERR(s));

}

ret = pinctrl_select_state(p, s);

if (ret < 0) {

 devm_pinctrl_put(p);

 return ERR_PTR(ret);

}

One usually performs such steps during driver initialization. The suitable place for this
code could be within the probe() function.

pinctrl_select_state() internally calls pinmux_enable_setting(),
which in turn calls the pin_request() on each pin in the pin control
node.

A pin control can be released with the pinctrl_put() function. One can use the resource-
managed version of the API. That said, one can use pinctrl_get_select(), given the
name of the state to select, in order to configure pinmux. The function is defined in
include/linux/pinctrl/consumer.h as follows:

static struct pinctrl *pinctrl_get_select(struct device *dev,

 const char *name)

Pin Control and GPIO Subsystem

[366]

where *name is the state name as written in pinctrl-name property. If the name of the
state is default, one can just call pinctr_get_select_default() function, which is a
wrapper around pinctl_get_select():

static struct pinctrl * pinctrl_get_select_default(

 struct device *dev)

{

 return pinctrl_get_select(dev, PINCTRL_STATE_DEFAULT);

}

Let us see a real example in a board-specific dts file (am335x-evm.dts):

dcan1: d_can@481d0000 {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&d_can1_pins>;

};

And in the corresponding driver:

pinctrl = devm_pinctrl_get_select_default(&pdev->dev);

if (IS_ERR(pinctrl))

 dev_warn(&pdev->dev,"pins are not configured from the driver\n");

The pin control core will automatically claim the default pinctrl state for
us when the device is probed. If one defines an init state, the pinctrl core
will automatically set pinctrl to this state before the probe() function, and
then switch to the default state after probe() (unless the driver
explicitly changed states already).

The GPIO subsystem
From the hardware point of view, a GPIO is a functionality, a mode in which a pin can
operate. From a software point of view, a GPIO is nothing but a digital line, which can
operate as an input or output, and can have only two values: (1 for high or 0 for low).
Kernel GPIO subsystems provide every function you can imagine to set up and handle
GPIO line from within your driver:

Prior to using a GPIO from within the driver, one should claim it to the kernel.
This is a way to take the ownership of the GPIO, preventing other drivers from
accessing the same GPIO. After taking the ownership of the GPIO, one can:

Set the direction

Pin Control and GPIO Subsystem

[367]

Toggle its output state (driving line high or low) if used as output
Set the debounce-interval and read the state, if used as input. For
GPIO lines mapped to IRQ, one can define at what edge/level the
interrupt should be triggered, and register a handler that will be
run whenever the interrupt occurs.

There are actually two different ways to deal with GPIO in the kernel, as follows:

The legacy and depreciated integer-based interface, where GPIOs are represented
by integer
The new and recommended descriptor-based interface, where a GPIO is
represented and described by an opaque structure, with a dedicated API

The integer-based GPIO interface: legacy
The integer-based interface is the most well-known. The GPIO is identified by an integer,
which is used for every operation that needs to be performed on the GPIO. The following is
the header that contains legacy GPIO access functions:

#include <linux/gpio.h>

There are well known functions to handle GPIO in kernel.

Claiming and configuring the GPIO
One can allocate and take the ownership of a GPIO using the gpio_request() function:

static int gpio_request(unsigned gpio, const char *label)

gpio represents the GPIO number we are interested in, and label is the label used by the
kernel for the GPIO in sysfs, as we can see in /sys/kernel/debug/gpio. You have to
check the value returned, where 0 mean success, and negative error code on error. Once
done with the GPIO, it should be set free with the gpio_free() function:

void gpio_free(unsigned int gpio)

If in doubt, one can use gpio_is_valid() function to check whether this GPIO number is
valid on the system prior to allocate it:

static bool gpio_is_valid(int number)

Pin Control and GPIO Subsystem

[368]

Once we own the GPIO, we can change its direction, depending on the need, and whether it
should be an input or output, using the gpio_direction_input() or
gpio_direction_output() functions:

static int gpio_direction_input(unsigned gpio)

static int gpio_direction_output(unsigned gpio, int value)

gpio is the GPIO number we need to set the direction. There is a second parameter when it
comes to configuring the GPIO as output: value, which is the state the GPIO should be in
once the output direction is effective. Here again, the return value is zero or a negative error
number. These functions are internally mapped on top of lower level callback functions
exposed by the driver of the GPIO controller that provides the GPIO we use. In the next
Chapter 15, GPIO Controller Drivers - gpio_chip, dealing with GPIO controller drivers, we
will see that a GPIO controller, through its struct gpio_chip structure, must expose a
generic set of callback functions to use its GPIOs.

Some GPIO controllers offer the possibility to change the GPIO debounce-interval (this is
only useful when the GPIO line is configured as input). This feature is platform-dependent.
One can use int gpio_set_debounce() to achieve that:

static int gpio_set_debounce(unsigned gpio, unsigned debounce)

where debounce is the debounce time in ms.

All the preceding functions should be called in a context that may sleep. It
is a good practice to claim and configure GPIOs from within the driver's
probe function.

Accessing the GPIO – getting/setting the value
You should pay attention when accessing GPIO. In an atomic context, especially in an
interrupt handler, one has to be sure the GPIO controller callback functions will not sleep. A
well-designed controller driver should be able to inform other drivers (actually clients)
whether call to its methods may sleep or not. This can be checked with gpio_cansleep()
function.

None of the functions used to access GPIO return an error code. That is
why you should pay attention and check return values during GPIO
allocation and configuration.

Pin Control and GPIO Subsystem

[369]

In atomic context

There are GPIO controllers that can be accessed and managed through simple memory
read/write operations. These are generally embedded in the SoC, and do not need to sleep.
gpio_cansleep() will always return false for those controllers. For such GPIOs, you can
get/set their value from within an IRQ handler, using the well-known gpio_get_value()
or gpio_set_value(), depending on the GPIO line being configured as input or output :

static int gpio_get_value(unsigned gpio)

void gpio_set_value(unsigned int gpio, int value);

gpio_get_value() should be used when the GPIO is configured as input (using
gpio_direction_input()), and return the actual value (state) of the GPIO. On the other
hand, gpio_set_value() will affect the value of the GPIO, which should have been
configured as an output using gpio_direction_output(). For both function, value can
be considered as Boolean, where zero means low, and non-zero value mean high.

In a non-atomic context (that may sleep)

On the other hand, there are GPIO controllers wired on buses such as SPI and I2C. Since
functions accessing those buses may lead to sleep, the gpio_cansleep() function should
always return true (it is up to the GPIO controller to take of returning true). In this case,
you should not access those GPIOs from within the IRQ handled, at least not in the top half
(the hard IRQ). Moreover, the accessors you have to use as your general-purpose access
should be suffixed with _cansleep.

static int gpio_get_value_cansleep(unsigned gpio);

void gpio_set_value_cansleep(unsigned gpio, int value);

They behave exactly like accessors without the _cansleep() name suffix, with the only
difference being that they prevent the kernel from printing warnings when the GPIOs are
accessed.

GPIOs mapped to IRQ
Input GPIOs can often be used as IRQ signals. Such IRQs can be edge-triggered or level-
triggered. The configuration depends on your needs. The GPIO controller is responsible for
providing the mapping between the GPIO and its IRQ. One can use goio_to_irq() to
map a given GPIO number to its IRQ number:

int gpio_to_irq(unsigned gpio);

Pin Control and GPIO Subsystem

[370]

The return value is the IRQ number, on which one can call request_irq() (or the
threaded version request_threaded_irq()) in order to register a handler for this IRQ:

static irqreturn_t my_interrupt_handler(int irq, void *dev_id)

{

 [...]

 return IRQ_HANDLED;

}

[...]

int gpio_int = of_get_gpio(np, 0);

int irq_num = gpio_to_irq(gpio_int);

int error = devm_request_threaded_irq(&client->dev, irq_num,

 NULL, my_interrupt_handler,

 IRQF_TRIGGER_RISING | IRQF_ONESHOT,

 input_dev->name, my_data_struct);

if (error) {

 dev_err(&client->dev, "irq %d requested failed, %d\n",

 client->irq, error);

 return error;

}

Putting it all together
The following code is a summary putting into practice all the concepts discussed regarding
integer-based interfaces. This driver manages four GPIOs: two buttons (btn1 and btn2), and
two LEDs (green and red). Btn1 is mapped to an IRQ, and whenever its state changes to
LOW, the state of btn2 is applied to LEDs. For example, if the state of btn1 goes LOW while
btn2 is high, GREEN and RED led will be driven to HIGH:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/gpio.h> /* For Legacy integer based GPIO */

#include <linux/interrupt.h> /* For IRQ */

static unsigned int GPIO_LED_RED = 49;

static unsigned int GPIO_BTN1 = 115;

static unsigned int GPIO_BTN2 = 116;

static unsigned int GPIO_LED_GREEN = 120;

static unsigned int irq;

static irq_handler_t btn1_pushed_irq_handler(unsigned int irq,

 void *dev_id, struct pt_regs *regs)

{

 int state;

Pin Control and GPIO Subsystem

[371]

 /* read BTN2 value and change the led state */

 state = gpio_get_value(GPIO_BTN2);

 gpio_set_value(GPIO_LED_RED, state);

 gpio_set_value(GPIO_LED_GREEN, state);

 pr_info("GPIO_BTN1 interrupt: Interrupt! GPIO_BTN2 state is %d)\n",

state);

 return IRQ_HANDLED;

}

static int __init helloworld_init(void)

{

 int retval;

 /*

 * One could have checked whether the GPIO is valid on the controller

or not,

 * using gpio_is_valid() function.

 * Ex:

 * if (!gpio_is_valid(GPIO_LED_RED)) {

 * pr_infor("Invalid Red LED\n");

 * return -ENODEV;

 * }

 */

 gpio_request(GPIO_LED_GREEN, "green-led");

 gpio_request(GPIO_LED_RED, "red-led");

 gpio_request(GPIO_BTN1, "button-1");

 gpio_request(GPIO_BTN2, "button-2");

 /*

 * Configure Button GPIOs as input

 *

 * After this, one can call gpio_set_debounce()

 * only if the controller has the feature

 *

 * For example, to debounce a button with a delay of 200ms

 * gpio_set_debounce(GPIO_BTN1, 200);

 */

 gpio_direction_input(GPIO_BTN1);

 gpio_direction_input(GPIO_BTN2);

 /*

 * Set LED GPIOs as output, with their initial values set to 0

 */

 gpio_direction_output(GPIO_LED_RED, 0);

 gpio_direction_output(GPIO_LED_GREEN, 0);

 irq = gpio_to_irq(GPIO_BTN1);

Pin Control and GPIO Subsystem

[372]

 retval = request_threaded_irq(irq, NULL,\

 btn1_pushed_irq_handler, \

 IRQF_TRIGGER_LOW | IRQF_ONESHOT, \

 "device-name", NULL);

 pr_info("Hello world!\n");

 return 0;

}

static void __exit hellowolrd_exit(void)

{

 free_irq(irq, NULL);

 gpio_free(GPIO_LED_RED);

 gpio_free(GPIO_LED_GREEN);

 gpio_free(GPIO_BTN1);

 gpio_free(GPIO_BTN2);

 pr_info("End of the world\n");

}

module_init(hellowolrd_init);

module_exit(hellowolrd_exit);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

The descriptor-based GPIO interface: the new
and recommended way
With the new descriptor-based GPIO interface, a GPIO is characterized by a coherent
struct gpio_desc structure:

struct gpio_desc {

 struct gpio_chip *chip;

 unsigned long flags;

 const char *label;

};

One should use the following header to be able to use the new interface:

#include <linux/gpio/consumer.h>

Pin Control and GPIO Subsystem

[373]

With the descriptor-based interface, prior to allocating and taking the ownership of GPIOs,
those GPIOs must have been mapped somewhere. By mapped, I mean they should be
assigned to your device, whereas with the legacy integer-based interface, you just have to
fetch a number anywhere and request it as a GPIO. Actually, there are three kinds of
mapping in the kernel:

Platform data mapping: The mapping is done in the board file.
Device tree: The mapping is done in DT style, the same as discussed in the
preceding sections. This is the mapping we will discuss in this book.
Advanced Configuration and Power Interface mapping (ACPI): The mapping is
done in ACPI style. Generally used on x86-based systems.

GPIO descriptor mapping - the device tree
GPIO descriptor mappings are defined in the consumer device's node. The property that
contains a GPIO descriptor mapping must be named <name>-gpios or <name>-gpio,
where <name> is meaningful enough to describe the function for which those GPIOs will be
used.

One should always suffix the property name with either -gpio or -gpios because every
descriptor-based interface function relies on the gpio_suffixes[] variable, defined in
drivers/gpio/gpiolib.h and shown as follows:

/* gpio suffixes used for ACPI and device tree lookup */

static const char * const gpio_suffixes[] = { "gpios", "gpio" };

Let us see how by having a look at the function used to look for GPIO descriptors mappings
in devices in DT:

static struct gpio_desc *of_find_gpio(struct device *dev,

 const char *con_id,

 unsigned int idx,

 enum gpio_lookup_flags *flags)

{

 char prop_name[32]; /* 32 is max size of property name */

 enum of_gpio_flags of_flags;

 struct gpio_desc *desc;

 unsigned int i;

 for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {

 if (con_id)

 snprintf(prop_name, sizeof(prop_name), "%s-%s",

 con_id,

 gpio_suffixes[i]);

Pin Control and GPIO Subsystem

[374]

 else

 snprintf(prop_name, sizeof(prop_name), "%s",

 gpio_suffixes[i]);

 desc = of_get_named_gpiod_flags(dev->of_node,

 prop_name, idx,

 &of_flags);

 if (!IS_ERR(desc) || (PTR_ERR(desc) == -EPROBE_DEFER))

 break;

 }

 if (IS_ERR(desc))

 return desc;

 if (of_flags & OF_GPIO_ACTIVE_LOW)

 *flags |= GPIO_ACTIVE_LOW;

 return desc;

}

Now, let us consider the following node, which is an excerpt of
Documentation/gpio/board.txt :

foo_device {

 compatible = "acme,foo";

 [...]

 led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */

 <&gpio 16 GPIO_ACTIVE_HIGH>, /* green */

 <&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */

 power-gpios = <&gpio 1 GPIO_ACTIVE_LOW>;

 reset-gpios = <&gpio 1 GPIO_ACTIVE_LOW>;

};

This is what a mapping should look like, with meaningful name.

Allocating and using GPIO
One can use either gpiog_get() or gpiod_get_index() to allocate a GPIO descriptor:

struct gpio_desc *gpiod_get_index(struct device *dev,

 const char *con_id,

 unsigned int idx,

 enum gpiod_flags flags)

struct gpio_desc *gpiod_get(struct device *dev,

 const char *con_id,

 enum gpiod_flags flags)

Pin Control and GPIO Subsystem

[375]

On error, these functions will return -ENOENT if no GPIO with the given function is
assigned, or another error on which one can use the IS_ERR() macro. The first function
returns the GPIO descriptor structure that corresponds to the GPIO at a given index,
whereas the second function returns the GPIO at index 0 (useful for one-GPIO mapping).
dev is the device to which the GPIO descriptor will belong. It is your device. con_id is the
function within the GPIO consumer. It corresponds to the <name> prefix of the property
name in the DT. idx is the index (starting from 0) of the GPIO for which one needs a
descriptor. flags is an optional parameter that determines the GPIO initialization flags, to
configure direction and/or output value. It is an instance of enum gpiod_flags, defined in
include/linux/gpio/consumer.h:

enum gpiod_flags {

 GPIOD_ASIS = 0,

 GPIOD_IN = GPIOD_FLAGS_BIT_DIR_SET,

 GPIOD_OUT_LOW = GPIOD_FLAGS_BIT_DIR_SET |

 GPIOD_FLAGS_BIT_DIR_OUT,

 GPIOD_OUT_HIGH = GPIOD_FLAGS_BIT_DIR_SET |

 GPIOD_FLAGS_BIT_DIR_OUT |

 GPIOD_FLAGS_BIT_DIR_VAL,

};

Now let us allocate GPIO descriptors for mappings defined in the preceding DT:

struct gpio_desc *red, *green, *blue, *power;

red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_HIGH);

green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_HIGH);

blue = gpiod_get_index(dev, "led", 2, GPIOD_OUT_HIGH);

power = gpiod_get(dev, "power", GPIOD_OUT_HIGH);

The LED GPIOs will be active-high, while the power GPIO will be active-low (that is,
gpiod_is_active_low(power) will be true). The reverse operation of allocation is done
with the gpiod_put() function:

gpiod_put(struct gpio_desc *desc);

Let us see how one can release red and blue GPIO LEDs:

gpiod_put(blue);

gpiod_put(red);

Pin Control and GPIO Subsystem

[376]

Before we go further, keep in mind that apart from the gpiod_get()/gpiod_get_index()
and gpio_put() functions, which completely differ from gpio_request() and
gpio_free(), one can perform API translation from integer-based interfaces to descriptor-
based ones just by changing the gpio_ prefix into gpiod_.

That said, to change direction, one should use the gpiod_direction_input() and
gpiod_direction_output() functions:

int gpiod_direction_input(struct gpio_desc *desc);

int gpiod_direction_output(struct gpio_desc *desc, int value);

value is the state to apply to the GPIO once the direction is set to output. If the GPIO
controller has this feature, one can set the debounce timeout of a given GPIO using its
descriptor:

int gpiod_set_debounce(struct gpio_desc *desc, unsigned debounce);

In order to access a GPIO given its descriptor, the same attention must be paid as with the
integer-based interface. In other words, one should take care whether one is in an atomic
(cannot sleep) or non-atomic context, and then use the appropriate function:

int gpiod_cansleep(const struct gpio_desc *desc);

/* Value get/set from sleeping context */

int gpiod_get_value_cansleep(const struct gpio_desc *desc);

void gpiod_set_value_cansleep(struct gpio_desc *desc, int value);

/* Value get/set from non-sleeping context */

int gpiod_get_value(const struct gpio_desc *desc);

void gpiod_set_value(struct gpio_desc *desc, int value);

For a GPIO descriptor mapped to IRQ, one can use gpiod_to_irq() in order to get the
IRQ number that corresponds to the given GPIO descriptor, which can be used with the
request_irq() function:

int gpiod_to_irq(const struct gpio_desc *desc);

At any given time in the code, one can switch from the descriptor-based interface to the
legacy integer-based interface and vice versa, using the desc_to_gpio() or
gpio_to_desc() functions:

/* Convert between the old gpio_ and new gpiod_ interfaces */

struct gpio_desc *gpio_to_desc(unsigned gpio);

int desc_to_gpio(const struct gpio_desc *desc);

Pin Control and GPIO Subsystem

[377]

Putting it all together
The driver bellows summarizes the concepts introduced in descriptor-based interfaces. The
principle is the same, as are the GPIOs:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/platform_device.h> /* For platform devices */

#include <linux/gpio/consumer.h> /* For GPIO Descriptor */

#include <linux/interrupt.h> /* For IRQ */

#include <linux/of.h> /* For DT*/

/*

 * Let us consider the below mapping in device tree:

 *

 * foo_device {

 * compatible = "packt,gpio-descriptor-sample";

 * led-gpios = <&gpio2 15 GPIO_ACTIVE_HIGH>, // red

 * <&gpio2 16 GPIO_ACTIVE_HIGH>, // green

 *

 * btn1-gpios = <&gpio2 1 GPIO_ACTIVE_LOW>;

 * btn2-gpios = <&gpio2 31 GPIO_ACTIVE_LOW>;

 * };

 */

static struct gpio_desc *red, *green, *btn1, *btn2;

static unsigned int irq;

static irq_handler_t btn1_pushed_irq_handler(unsigned int irq,

 void *dev_id, struct pt_regs *regs)

{

 int state;

 /* read the button value and change the led state */

 state = gpiod_get_value(btn2);

 gpiod_set_value(red, state);

 gpiod_set_value(green, state);

 pr_info("btn1 interrupt: Interrupt! btn2 state is %d)\n",

 state);

 return IRQ_HANDLED;

}

static const struct of_device_id gpiod_dt_ids[] = {

 { .compatible = "packt,gpio-descriptor-sample", },

 { /* sentinel */ }

};

Pin Control and GPIO Subsystem

[378]

static int my_pdrv_probe (struct platform_device *pdev)

{

 int retval;

 struct device *dev = &pdev->dev;

 /*

 * We use gpiod_get/gpiod_get_index() along with the flags

 * in order to configure the GPIO direction and an initial

 * value in a single function call.

 *

 * One could have used:

 * red = gpiod_get_index(dev, "led", 0);

 * gpiod_direction_output(red, 0);

 */

 red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_LOW);

 green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_LOW);

 /*

 * Configure GPIO Buttons as input

 *

 * After this, one can call gpiod_set_debounce()

 * only if the controller has the feature

 * For example, to debounce a button with a delay of 200ms

 * gpiod_set_debounce(btn1, 200);

 */

 btn1 = gpiod_get(dev, "led", 0, GPIOD_IN);

 btn2 = gpiod_get(dev, "led", 1, GPIOD_IN);

 irq = gpiod_to_irq(btn1);

 retval = request_threaded_irq(irq, NULL,\

 btn1_pushed_irq_handler, \

 IRQF_TRIGGER_LOW | IRQF_ONESHOT, \

 "gpio-descriptor-sample", NULL);

 pr_info("Hello! device probed!\n");

 return 0;

}

static void my_pdrv_remove(struct platform_device *pdev)

{

 free_irq(irq, NULL);

 gpiod_put(red);

 gpiod_put(green);

 gpiod_put(btn1);

 gpiod_put(btn2);

 pr_info("good bye reader!\n");

}

static struct platform_driver mypdrv = {

Pin Control and GPIO Subsystem

[379]

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = "gpio_descriptor_sample",

 .of_match_table = of_match_ptr(gpiod_dt_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

The GPIO interface and the device tree
Whatever interface one needs to use GPIO for, how to specify GPIOs depends on the
controller providing them, especially regarding its #gpio-cells property, which
determines the number of cells used for a GPIO specifier. A GPIO specifier contains at least
the controller phandle, and one or more argument, where the number of arguments on
#gpio-cells property of the controller that provides the GPIO. The first cell is generally
the GPIO offset number on the controller, and the second represents the GPIO flags.

GPIO properties should be named [<name>-]gpios], with <name> being the purpose of
this GPIO for the device. Keep in mind this rule is a must for descriptor-based interfaces,
and becomes <name>-gpios (note the absence of square brackets, meaning that the <name>
prefix is mandatory):

gpio1: gpio1 {

 gpio-controller;

 #gpio-cells = <2>;

};

gpio2: gpio2 {

 gpio-controller;

 #gpio-cells = <1>;

};

[...]

cs-gpios = <&gpio1 17 0>,

 <&gpio2 2>;

 <0>, /* holes are permitted, means no GPIO 2 */

 <&gpio1 17 0>;

reset-gpios = <&gpio1 30 0>;

cd-gpios = <&gpio2 10>;

Pin Control and GPIO Subsystem

[380]

In the preceding sample, CS GPIOs contain both controller-1 and controller-2 GPIOs. If one
does not need to specify a GPIO at a given index in the list, one can use <0>. The reset GPIO
has two cells (two arguments after the controller phandle), whereas CD GPIO has only one
cell. You can see how meaningful the names are that I gave to my GPIO specifier.

The legacy integer-based interface and device tree
This interface relies on the following header:

#include <linux/of_gpio.h>

There are two functions you should remember when you need to support DT from within
your driver using legacy integer-based interfaces; these are of_get_named_gpio() and
of_get_named_gpio_count():

int of_get_named_gpio(struct device_node *np,

 const char *propname, int index)

int of_get_named_gpio_count(struct device_node *np,

 const char* propname)

Given a device node, the former returns the GPIO number of the property *propname at
index position. The second just returns the number of GPIOs specified in the property:

int n_gpios = of_get_named_gpio_count(dev.of_node,

 "cs-gpios"); /* return 4 */

int second_gpio = of_get_named_gpio(dev.of_node, "cs-gpio", 1);

int rst_gpio = of_get_named_gpio("reset-gpio", 0);

gpio_request(second_gpio, "my-gpio);

There are drivers still supporting the old specifier, where GPIO properties are named
[<name>-gpio] or gpios. In that case, one should use unnamed API versions, by means of
of_get_gpio() and of_gpio_count():

int of_gpio_count(struct device_node *np)

int of_get_gpio(struct device_node *np, int index)

The DT node would look like:

my_node@addr {

 compatible = "[...]";

 gpios = <&gpio1 2 0>, /* INT */

 <&gpio1 5 0>; /* RST */

 [...]

};

Pin Control and GPIO Subsystem

[381]

The code in the driver would look like this:

struct device_node *np = dev->of_node;

if (!np)

 return ERR_PTR(-ENOENT);

int n_gpios = of_gpio_count(); /* Will return 2 */

int gpio_int = of_get_gpio(np, 0);

if (!gpio_is_valid(gpio_int)) {

 dev_err(dev, "failed to get interrupt gpio\n");

 return ERR_PTR(-EINVAL);

}

gpio_rst = of_get_gpio(np, 1);

if (!gpio_is_valid(pdata->gpio_rst)) {

 dev_err(dev, "failed to get reset gpio\n");

 return ERR_PTR(-EINVAL);

}

One can summarize this by rewriting the first driver (the one for integer-based interfaces),
in order to comply with the platform drivers structure, and use DT API:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/platform_device.h> /* For platform devices */

#include <linux/interrupt.h> /* For IRQ */

#include <linux/gpio.h> /* For Legacy integer based GPIO */

#include <linux/of_gpio.h> /* For of_gpio* functions */

#include <linux/of.h> /* For DT*/

/*

 * Let us consider the following node

 *

 * foo_device {

 * compatible = "packt,gpio-legacy-sample";

 * led-gpios = <&gpio2 15 GPIO_ACTIVE_HIGH>, // red

 * <&gpio2 16 GPIO_ACTIVE_HIGH>, // green

 *

 * btn1-gpios = <&gpio2 1 GPIO_ACTIVE_LOW>;

 * btn2-gpios = <&gpio2 1 GPIO_ACTIVE_LOW>;

 * };

 */

static unsigned int gpio_red, gpio_green, gpio_btn1, gpio_btn2;

static unsigned int irq;

Pin Control and GPIO Subsystem

[382]

static irq_handler_t btn1_pushed_irq_handler(unsigned int irq, void

*dev_id,

 struct pt_regs *regs)

{

 /* The content of this function remains unchanged */

 [...]

}

static const struct of_device_id gpio_dt_ids[] = {

 { .compatible = "packt,gpio-legacy-sample", },

 { /* sentinel */ }

};

static int my_pdrv_probe (struct platform_device *pdev)

{

 int retval;

 struct device_node *np = &pdev->dev.of_node;

 if (!np)

 return ERR_PTR(-ENOENT);

 gpio_red = of_get_named_gpio(np, "led", 0);

 gpio_green = of_get_named_gpio(np, "led", 1);

 gpio_btn1 = of_get_named_gpio(np, "btn1", 0);

 gpio_btn2 = of_get_named_gpio(np, "btn2", 0);

 gpio_request(gpio_green, "green-led");

 gpio_request(gpio_red, "red-led");

 gpio_request(gpio_btn1, "button-1");

 gpio_request(gpio_btn2, "button-2");

 /* Code to configure GPIO and request IRQ remains unchanged */

 [...]

 return 0;

}

static void my_pdrv_remove(struct platform_device *pdev)

{

 /* The content of this function remains unchanged */

 [...]

}

static struct platform_driver mypdrv = {

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = "gpio_legacy_sample",

Pin Control and GPIO Subsystem

[383]

 .of_match_table = of_match_ptr(gpio_dt_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

GPIO mapping to IRQ in the device tree
One can easily map GPIO to IRQ in the device tree. Two properties are used to specify an
interrupt:

interrupt-parent: This is the GPIO controller for GPIO
interrupts: This is the interrupts specifier list

This applies to legacy and descriptor-based interface. The IRQ specifier depends on the
#interrupt-cell property of the GPIO controller providing this GPIO. #interrupt-
cell determine the number of cells used when specifying the interrupt. Generally, the first
cell represents the GPIO number to map to an IRQ and the second cell represents what
level/edge should trigger the interrupt. In any case, interrupt specifier always depends on
its parent (the one which has the interrupt-controller set), so refer to its binding
documentation in the kernel source:

gpio4: gpio4 {

 gpio-controller;

 #gpio-cells = <2>;

 interrupt-controller;

 #interrupt-cells = <2>;

};

my_label: node@0 {

 reg = <0>;

 spi-max-frequency = <1000000>;

 interrupt-parent = <&gpio4>;

 interrupts = <29 IRQ_TYPE_LEVEL_LOW>;

};

Pin Control and GPIO Subsystem

[384]

There are two solutions for obtaining the corresponding IRQ:

Your device sits on a known bus (I2C or SPI): The IRQ mapping will be done for1.
you, and made available either through the struct i2c_client or struct
spi_device structure given to your probe() function (by means of
i2c_client.irq or spi_device.irq).
Your device sits on the pseudo-platform bus: The probe() function will be2.
given a struct platform_device, on which you can call
platform_get_irq():

int platform_get_irq(struct platform_device *dev, unsigned int num);

Feel free to have a look at Chapter 6, The Concept of Device Tree.

GPIO and sysfs
The sysfs GPIO interface lets people manage and control GPIOs through sets or files. It is
located under /sys/class/gpio. The device model is heavily used here, and there are
three kinds of entries available:

/sys/class/gpio/: This is where everything begins. This directory contains
two special files, export and unexport:

export: This allow us to ask the kernel to export control of a given
GPIO to user space by writing its number to this file. Example:
echo 21 > export will create a GPIO21 node for GPIO #21, if
that's not requested by kernel code.
unexport: This reverses the effect of exporting to user space.
Example: echo 21 > unexport will remove any GPIO21 node
exported using the export file.

Pin Control and GPIO Subsystem

[385]

/sys/class/gpio/gpioN/: This directory corresponds to the GPIO number N
(where N is global to the system, not relative to the chip), exported either using
the export file, or from within the kernel. For example:
/sys/class/gpio/gpio42/ (for GPIO #42) with the following read/write
attributes:

The direction file is used to get/set GPIO direction. Allowed
values are either in or out strings. This value may normally be
written. Writing as out defaults to initializing the value as low. To
ensure glitch-free operation, low and high values may be written to
configure the GPIO as an output with that initial value. This
attribute will not exist if the kernel code has exported this GPIO,
disabling direction (see the gpiod_export() or gpio_export()
function).
The value attribute lets us get/set the state of the GPIO line,
depending on the direction, input or output. If the GPIO is
configured as an output, any non-zero value written will be treated
as HIGH state. If configured as an output, writing 0 will set the
output low, whereas 1 will set the output high. If the pin can be
configured as an interrupt-generating lines and if it has been
configured to generate, one can call the poll(2) system call on
that file and poll(2) will return whenever the interrupt was
triggered. Using poll(2) wil require setting the events POLLPRI
and POLLERR. If one uses select(2) instead, one should set the
file descriptor in exceptfds. After poll(2) returns, either
lseek(2) to the beginning of the sysfs file and read the new value
or close the file and re-open it to read the value. It is the same
principle as we discussed regarding the pollable sysfs attribute.
edge determines the signal edge that will let the poll() or
select() function return. Allowed values are none, rising,
falling, or both. This file is readable/writable, and exists only if
the pin can be configured as an interrupt-generating input pin.
active_low reads as either 0 (false) or 1 (true). Writing any non-
zero value will invert the value attribute for both reading and
writing. Existing and subsequent poll(2) support configurations
through the edge attribute for rising and falling edges will follow
this setting. The relevant function from kernel to set this value is
gpio_sysf_set_active_low().

Pin Control and GPIO Subsystem

[386]

Exporting a GPIO from kernel code
Apart from using /sys/class/gpio/export file to export a GPIO to user space, one can
use functions like gpio_export (for legacy interface) or gpioD_export (the new interface)
from the kernel code in order to explicitly manage export of GPIOs which have already
been requested using gpio_request() or gpiod_get():

int gpio_export(unsigned gpio, bool direction_may_change);

int gpiod_export(struct gpio_desc *desc, bool direction_may_change);

The direction_may_change parameter decides if one can change the signal direction
from input to output and vice versa. The reverse operations from kernel are
gpio_unexport() or gpiod_unexport():

void gpio_unexport(unsigned gpio); /* Integer-based interface */

void gpiod_unexport(struct gpio_desc *desc) /* Descriptor-based */

Once exported, one can use gpio_export_link() (or gpiod_export_link() for
descriptor-based interfaces) in order to create symbolic links from elsewhere in sysfs, which
will point to the GPIO sysfs node. Drivers can use this to provide the interface under their
own device in sysfs with a descriptive name:

int gpio_export_link(struct device *dev, const char *name,

 unsigned gpio)

int gpiod_export_link(struct device *dev, const char *name,

 struct gpio_desc *desc)

One could use this in the probe() function for descriptor-based interfaces as follows:

static struct gpio_desc *red, *green, *btn1, *btn2;

static int my_pdrv_probe (struct platform_device *pdev)

{

 [...]

 red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_LOW);

 green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_LOW);

 gpiod_export(&pdev->dev, "Green_LED", green);

 gpiod_export(&pdev->dev, "Red_LED", red);

 [...]

 return 0;

}

Pin Control and GPIO Subsystem

[387]

For integer-based interfaces, the code would look like this:

static int my_pdrv_probe (struct platform_device *pdev)

{

 [...]

 gpio_red = of_get_named_gpio(np, "led", 0);

 gpio_green = of_get_named_gpio(np, "led", 1);

 [...]

 int gpio_export_link(&pdev->dev, "Green_LED", gpio_green)

 int gpio_export_link(&pdev->dev, "Red_LED", gpio_red)

 return 0;

}

Summary
Dealing with a GPIO from within the kernel is an easy task, as shown in this chapter. Both
legacy and new interfaces are discussed, giving the possibility to choose the one that fits
your needs, in order to write enhanced GPIO drivers. You'll be able to handle IRQs mapped
to GPIOs. The next chapter will deal with the chip that provides and exposes GPIO lines,
known as the GPIO controller.

15
GPIO Controller Drivers –

gpio_chip
In the previous chapter, we dealt with GPIO lines. Those lines are exposed to the system by
means of a special device called the GPIO controller. This chapter will explain step by step
how to write drivers for such devices, thus covering the following topics:

GPIO controller driver architecture and data structures
Sysfs interface for GPIO controllers
GPIO controllers representation in DT

Driver architecture and data structures
Drivers for such devices should provide:

Methods to establish GPIO direction (input and output).
Methods used to access GPIO values (get and set).
Methods to map a given GPIO to IRQ and return the associated number.
Flag saying whether calls to its methods may sleep, this is very important.
Optional debugfs dump method (showing extra state like pullup config).
Optional numbers called base number, from which GPIO numbering should
start. It will be automatically assigned if omitted.

GPIO Controller Drivers – gpio_chip

[389]

In the kernel, a GPIO controller is represented as an instance of struct gpio_chip,
defined in linux/gpio/driver.h:

struct gpio_chip {

 const char *label;

 struct device *dev;

 struct module *owner;

 int (*request)(struct gpio_chip *chip, unsigned offset);

 void (*free)(struct gpio_chip *chip, unsigned offset);

 int (*get_direction)(struct gpio_chip *chip, unsigned offset);

 int (*direction_input)(struct gpio_chip *chip, unsigned offset);

 int (*direction_output)(struct gpio_chip *chip, unsigned offset,

 int value);

 int (*get)(struct gpio_chip *chip,unsigned offset);

 void (*set)(struct gpio_chip *chip, unsigned offset, int value);

 void (*set_multiple)(struct gpio_chip *chip, unsigned long *mask,

 unsigned long *bits);

 int (*set_debounce)(struct gpio_chip *chip, unsigned offset,

 unsigned debounce);

 int (*to_irq)(struct gpio_chip *chip, unsigned offset);

 int base;

 u16 ngpio;

 const char *const *names;

 bool can_sleep;

 bool irq_not_threaded;

 bool exported;

#ifdef CONFIG_GPIOLIB_IRQCHIP

 /*

 * With CONFIG_GPIOLIB_IRQCHIP we get an irqchip

 * inside the gpiolib to handle IRQs for most practical cases.

 */

 struct irq_chip *irqchip;

 struct irq_domain *irqdomain;

 unsigned int irq_base;

 irq_flow_handler_t irq_handler;

 unsigned int irq_default_type;

#endif

#if defined(CONFIG_OF_GPIO)

 /*

 * If CONFIG_OF is enabled, then all GPIO controllers described in the

 * device tree automatically may have an OF translation

 */

 struct device_node *of_node;

GPIO Controller Drivers – gpio_chip

[390]

 int of_gpio_n_cells;

 int (*of_xlate)(struct gpio_chip *gc,

 const struct of_phandle_args *gpiospec, u32 *flags);

}

The following is the meaning of each element in the structure:

request is an optional hook for chip-specific activation. If provided, it is
executed prior to allocating GPIO whenever one calls gpio_request() or
gpiod_get().
free is an optional hook for chip-specific deactivation. If provided, it is executed
before the GPIO is deallocated whenever one calls gpiod_put() or
gpio_free().
get_direction is executed whenever one needs to know the direction of the
GPIO offset. Return value should be 0 to mean out, and 1 to mean in, (same as
GPIOF_DIR_XXX), or negative error.
direction_input configures the signal offset as input, or returns error.
get returns value of GPIO offset; for output signals, this returns either the
value actually sensed, or zero.
set assigns output value to GPIO offset.
set_multiple is called when one needs to assign output values for multiple
signals defined by mask. If not provided, the kernel will install a generic hook
that will walk through mask bits and execute chip->set(i) on each bit set.

Please see the following which shows how one can implement this function:

 static void gpio_chip_set_multiple(struct gpio_chip *chip,

 unsigned long *mask, unsigned long *bits)

{

 if (chip->set_multiple) {

 chip->set_multiple(chip, mask, bits);

 } else {

 unsigned int i;

 /* set outputs if the corresponding mask bit is set */

 for_each_set_bit(i, mask, chip->ngpio)

 chip->set(chip, i, test_bit(i, bits));

 }

}

GPIO Controller Drivers – gpio_chip

[391]

set_debounce if supported by the controller, this hook is an optional callback
provided to set the debounce time for specified GPIO.
to_irq is an optional hook to provide GPIO to IRQ mapping. This is called
whenever one wants to execute the gpio_to_irq() or gpiod_to_irq()
function. This implementation may not sleep.
base identifies the first GPIO number handled by this chip; or, if negative during
registration, the kernel will automatically (dynamically) assign one.
ngpio is the number of GPIOs this controller provides, starts from base, to
(base + ngpio - 1).
names, if set, must be an array of strings to use as alternative names for the
GPIOs in this chip. The array must be ngpio sized, and any GPIO that does not
need an alias may have its entry set to NULL in the array.
can_sleep is a Boolean flag to be set if get()/set() method may sleep. It is the
case for GPIO controller (also known as expander) sitting on a bus, such as I2C or
SPI, whose accesses may lead to sleep. This implies that if the chip supports IRQs,
these IRQs need to be threaded as the chip access may sleep when, for example,
reading out the IRQ status registers. For GPIO controller mapped to memory
(part of SoC), this can be set to false.
irq_not_threaded is a Boolean flag and must be set if can_sleep is set, but the
IRQs don't need to be threaded.

Each chip exposes a number of signals, identified in method calls by offset
values in the range 0 (ngpio - 1). When those signals are referenced
through calls like gpio_get_value(gpio), the offset is calculated by
subtracting base from the GPIO number.

After every callback has been defined and other fields set, one should call gpiochip_add()
on the configured struct gpio_chip structure in order to register the controller with the
kernel. When it comes to unregister, use gpiochip_remove(). That is all. You can see how
easy it is to write your own GPIO controller driver. In the book sources repository, you will
find a working GPIO controller driver, for MCP23016 I2C I/O expander from microchip,
whose data sheet is available at
http://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf.

To write such drivers, you should include:

#include <linux/gpio.h>

http://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf

GPIO Controller Drivers – gpio_chip

[392]

The following is an excerpt from the driver we have written for our controller, just to show
you how easy the task, of writing a GPIO controller driver is:

#define GPIO_NUM 16

struct mcp23016 {

 struct i2c_client *client;

 struct gpio_chip chip;

};

static int mcp23016_probe(struct i2c_client *client,

 const struct i2c_device_id *id)

{

 struct mcp23016 *mcp;

 if (!i2c_check_functionality(client->adapter,

 I2C_FUNC_SMBUS_BYTE_DATA))

 return -EIO;

 mcp = devm_kzalloc(&client->dev, sizeof(*mcp), GFP_KERNEL);

 if (!mcp)

 return -ENOMEM;

 mcp->chip.label = client->name;

 mcp->chip.base = -1;

 mcp->chip.dev = &client->dev;

 mcp->chip.owner = THIS_MODULE;

 mcp->chip.ngpio = GPIO_NUM; /* 16 */

 mcp->chip.can_sleep = 1; /* may not be accessed from actomic context */

 mcp->chip.get = mcp23016_get_value;

 mcp->chip.set = mcp23016_set_value;

 mcp->chip.direction_output = mcp23016_direction_output;

 mcp->chip.direction_input = mcp23016_direction_input;

 mcp->client = client;

 i2c_set_clientdata(client, mcp);

 return gpiochip_add(&mcp->chip);

}

To request a self-owned GPIO from within the controller driver, one should not use
gpio_request(). A GPIO driver can use the following functions instead to request and
free descriptors without being pinned to the kernel forever:

struct gpio_desc *gpiochip_request_own_desc(struct gpio_desc *desc, const

char *label)

void gpiochip_free_own_desc(struct gpio_desc *desc)

Descriptors requested with gpiochip_request_own_desc() must be released with
gpiochip_free_own_desc().

GPIO Controller Drivers – gpio_chip

[393]

Pin controller guideline
Depending on the controller you write the driver for, you may need to implement some pin
control operation to handle pin multiplexing, configuration, and so on:

For a pin controller that can only do simple GPIO, a simple struct gpio_chip
will be sufficient to handle it. There is no need to set up a struct
pinctrl_desc structure, just write the GPIO controller driver as it.
If the controller can generate interrupts on top of the GPIO functionality, a
struct irq_chip must be set up and registered to the IRQ subsystem.
For a controller having pin multiplexing, advanced pin driver strength, complex
biasing, you should set up the following three interfaces :

struct gpio_chip, discussed earlier in this chapter
struct irq_chip, discussed in the next chapter (Chapter 16,
Advanced IRQ Management)
struct pinctrl_desc, not discussed in the book, but well
explained in the kernel documentation in Documentation/pinctrl.txt

Sysfs interface for GPIO controller
On successful gpiochip_add(), a directory entry with a path like
/sys/class/gpio/gpiochipX/ will be created, where X is the GPIO controller base
(controller providing GPIOs starting at #X), having the following attributes:

base, whose value is same as X, and which corresponds to gpio_chip.base (if
assigned statically), and being the first GPIO managed by this chip.
label, which is provided for diagnostics (not always unique).
ngpio, which tells how many GPIOs this controller provides (N to N + ngpio
- 1). This is the same as defined in gpio_chip.ngpios.

All of the preceding attributes are read-only.

GPIO Controller Drivers – gpio_chip

[394]

GPIO controllers and DT
Every GPIO controller declared in the DT must have the Boolean property gpio-
controller set. Some controllers provide IRQ mapped to the GPIO. In that case, the
property interrupt-cells should be set too and usually one uses 2, but it depends on the
need. The first cell is the pin number, and the second represents the interrupt flag.

gpio-cells should be set to identify how many cells are used to describe a GPIO specifier.
One usually uses <2>, the first cell to identify the GPIO number, and the second for flags.
Actually, most of the nonmemory mapped GPIO controllers do not use the flags:

expander_1: mcp23016@27 {

 compatible = "microchip,mcp23016";

 interrupt-controller;

 gpio-controller;

 #gpio-cells = <2>;

 interrupt-parent = <&gpio6>;

 interrupts = <31 IRQ_TYPE_LEVEL_LOW>;

 reg = <0x27>;

 #interrupt-cells=<2>;

};

The preceding sample is the node of our GPIO-controller device, and the complete device
driver is provided with the sources of the book.

Summary
This chapter is much more than a basis to write the driver for a GPIO controller that you
may encounter. It explains the main structure to describe such devices. The next chapter
deals with advanced IRQ management, in which we will see how to manage an interrupt
controller and thus add such functionality in the driver of the MCP23016 expander from
microchip.

16
Advanced IRQ Management

Linux is a system on which devices notify the kernel about particular events by means of
IRQs. The CPU exposes IRQ lines, shared or not, and used by connected devices, so that
when a device needs the CPU it sends a request to the CPU. When the CPU gets this request
it stops its actual job and saves its context, in order to serve the request issued by the device.
After serving the device, its state is restored back to exactly where it stopped when the
interruption occurred. There are so many IRQ lines, that another device is responsible for
them to the CPU. That device is the interrupt controller:

Interrupt controller and IRQ lines

Advanced IRQ Management

[396]

Not only can devices raise interrupts, some processor operations can do that too. There are
two different kinds of interrupts:

Synchronous interrupts called exceptions, produced by the CPU while1.
processing instructions. These are non-maskable interrupts (NMI), and result
from a critical malfunction such as hardware failure. They are always processed
by the CPU.
Asynchronous interrupts called interrupts, are issued by other hardware devices.2.
These are normal and maskable interrupts. It is what we will discuss in the next
sections of this chapter. Therefore, let us go a bit deeper into exceptions:

Exceptions are consequences of programming errors handled by the kernel, which sends a
signal to the program and tries to recover from the error. These are classified in two
categories, enumerated below:

Processor-detected exceptions: Those the CPU generates in response to an
anomalous condition, and it is divided into three groups:

Faults, which can generally be corrected (bogus instruction).
Traps, which occur in user process (invalid memory access,
division by zero), are also a mechanism to switch to kernel mode in
response to a system call. If the kernel code does cause a trap, it
immediately panics.
Aborts, the serious errors.

Programmed exception: These are requested by the programmer, handled like a
trap.

The following array lists unmaskable interrupts (for more details refer to
http://wiki.osdev.org/Exceptions):

Interrupt number Description

0 Divide by zero error

1 Debug exception

2 NMI interrupt

3 Breakpoint

4 INTO detected overflow

5 BOUND range exceeded

6 Invalid opcode

http://wiki.osdev.org/Exceptions

Advanced IRQ Management

[397]

7 Coprocessor (device) not available

8 Double fault

9 Coprocessor segment overrun

10 Invalid task state segment

11 Segment not present

12 Stack fault

13 General protection fault

14 Page fault

15 Reserved

16 Coprocessor error

17 - 31 Reserved

32 - 255 Maskable interrupts

NMIs are enough to cover the whole exception list. Back to maskable interrupts, their
number depends on the number of devices connected, and how they actually share those
IRQ lines. Sometimes, they are not enough and some of them need multiplexing. The
commonly used method is by means of a GPIO controller, which also acts as an interrupt
controller. In this chapter, we will deal with the API that the kernel offers to manage IRQ
and the ways by which multiplexing can be done, and get deeper in interrupt controller
driver writing.

That said, in this chapter the following topics will be covered:

Interrupt controllers and interrupt multiplexing
Advanced peripheral IRQs management
Interrupt requests and propagations (chained or nested)
GPIOLIB irqchip API
Handling interrupt controllers from DT

Advanced IRQ Management

[398]

Multiplexing interrupts and interrupt
controllers
Having a single interrupt from the CPU is usually not enough. Most systems have tens and
hundreds of them. Now comes interrupt controller, allowing them to be multiplexed. Very
often architecture or platform-specific offers specific facilities, such as:

Masking/unmasking individual interrupts
Setting priorities
SMP affinity
Exotic things like wake-up interrupts

IRQ management and interrupt controller drivers both rely on the IRQ domain, its turn
built on top of the following structures:

struct irq_chip: This structure implements a set of methods describing how
to drive the interrupt controller, and which are directly called by core IRQ code.
struct irqdomain structure, which provides:

A pointer to the firmware node for a given interrupt controller
(fwnode)
A method to convert a firmware description of an IRQ into an ID
local to this interrupt controller (hwirq)
A way to retrieve the Linux view of an IRQ from hwirq

struct irq_desc: This structure is the Linux's view of an interrupt, containing
all the core stuff, and one to one mapping to the Linux interrupt number
struct irq_action: This structure Linux uses to describe an IRQ handler
struct irq_data: This is embedded in the struct irq_desc structure, and
contains:

The data that is relevant to the irq_chip managing this interrupt
Both the Linux IRQ number and the hwirq
A pointer to the irq_chip

Almost every irq_chip call is given an irq_data as a parameter, from which you can
obtain the corresponding irq_desc.

Advanced IRQ Management

[399]

All the preceding structures are part of the IRQ domain API. An interrupt controller is
represented in the kernel by an instance of struct irq_chip structure, which describes
the actual hardware device, and some methods used by the IRQ core:

struct irq_chip {

 struct device *parent_device;

 const char *name;

 void (*irq_enable)(struct irq_data *data);

 void (*irq_disable)(struct irq_data *data);

 void (*irq_ack)(struct irq_data *data);

 void (*irq_mask)(struct irq_data *data);

 void (*irq_unmask)(struct irq_data *data);

 void (*irq_eoi)(struct irq_data *data);

 int (*irq_set_affinity)(struct irq_data *data, const struct cpumask

*dest, bool force);

 int (*irq_retrigger)(struct irq_data *data);

 int (*irq_set_type)(struct irq_data *data, unsigned int flow_type);

 int (*irq_set_wake)(struct irq_data *data, unsigned int on);

 void (*irq_bus_lock)(struct irq_data *data);

 void (*irq_bus_sync_unlock)(struct irq_data *data);

 int (*irq_get_irqchip_state)(struct irq_data *data, enum

irqchip_irq_state which, bool *state);

 int(*irq_set_irqchip_state)(struct irq_data *data, enum

irqchip_irq_state which, bool state);

 unsigned long flags;

};

The following is the meaning of elements in the structure:

parent_device: This is a pointer to the parent of this irqchip.
name: This is the name for /proc/interrupts file.
irq_enable: This hook enables the interrupt, and its default value is
chip->unmask if NULL.
irq_disable: This disables the interrupt.
* irq_ack: This is the start of a new interrupt. Some controllers do not need this.
Linux calls this function as soon as an interrupt is raised, far before it is serviced.
Some implementations map this function to chip->disable(), so that another
interrupt request on the line will not cause another interrupt until after the
current interrupt request has been serviced.

Advanced IRQ Management

[400]

irq_mask: This is the hook that masks an interrupt source in the hardware, so
that it cannot be raised anymore.
irq_unmask: This hook unmasks an interrupt source.
irq_eoi: eoi stands for end of interrupt. Linux invokes this hook right after an
IRQ servicing completes. One uses this function to reconfigure the controller as
necessary in order to receive another interrupt request on that line. Some
implementations map this function to chip->enable() to reverse operations
done in chip->ack().
irq_set_affinity: This sets the CPU affinity only on SMP machines. In SMP
environments, this function sets the CPU on which the interrupt will be serviced.
This function isn't used in single processor machines.
irq_retrigger: This retriggers the interrupt in the hardware, which resends an
IRQ to the CPU.
irq_set_type: This sets the flow type (IRQ_TYPE_LEVEL/ and so on) of an
IRQ.
irq_set_wake: This enables/disables power-management wake-on of an IRQ.
irq_bus_lock: This functions to lock access to slow bus (I2C) chips. Locking a
mutex here is sufficient.
irq_bus_sync_unlock: This functions to sync and unlock slow bus (I2C) chips.
Unlock the mutex previously locked.
irq_get_irqchip_state and irq_set_irqchip_state: These respectively
return or set the internal state of an interrupt.

Each interrupt controller is given a domain, which is for the controller what an address
space is for a process (see Chapter 11, Kernel Memory Management). The interrupt controller
domain is described in the kernel as an instance of struct irq_domain structure. It
manages mappings between hardware IRQ and Linux IRQ (that is, virtual IRQ). It is the
hardware interrupt number translation object:

struct irq_domain {

 const char *name;

 const struct irq_domain_ops *ops;

 void *host_data;

 unsigned int flags;

 /* Optional data */

 struct fwnode_handle *fwnode;

 [...]

};

Advanced IRQ Management

[401]

name is the name of the interrupt domain.
ops is a pointer to the irq_domain methods.
host_data is private data pointer for use by the owner. Not touched by the
irqdomain core code.
flags is host per irq_domain flags.
fwnode is optional. It is a pointer to DT nodes associated with the irq_domain.
Used when decoding DT interrupt specifiers.

An interrupt controller driver creates and registers an irq_domain by calling one of the
irq_domain_add_<mapping_method>() functions, where <mapping_method> is the
method by which hwirq should be mapped to Linux IRQ. These are:

irq_domain_add_linear(): This uses a fixed size table indexed by the hwirq1.
number. When a hwirq is mapped, an irq_desc is allocated for the hwirq, and
the IRQ number is stored in the table. This linear mapping is suitable for fixed
and small numbers of hwirq (~ < 256). The inconvenience of this mapping is the
table size, being as large as the largest possible hwirq number. Therefore, IRQ
number lookup time is fixed, and irq_desc are allocated for in-use IRQs only.
The majority of drivers should use the linear map. This function has the
following prototype:

struct irq_domain *irq_domain_add_linear(struct device_node

*of_node,

 unsigned int size,

 const struct irq_domain_ops *ops,

 void *host_data)

irq_domain_add_tree(): This is where the irq_domain maintains the2.
mapping between Linux IRQs and hwirq numbers in a radix tree. When a hwirq
is mapped, an irq_desc is allocated and the hwirq is used as the lookup key for
the radix tree. The tree map is a good choice if the hwirq number can be very
large since it does not need to allocate a table as large as the largest hwirq
number. The disadvantage is that hwirq to IRQ number lookup is dependent on
how many entries are in the table. Very few drivers should need this mapping. It
has the following prototype:

struct irq_domain *irq_domain_add_tree(struct device_node *of_node,

 const struct irq_domain_ops *ops,

 void *host_data)

Advanced IRQ Management

[402]

irq_domain_add_nomap(): You will probably never use this method.3.
Nonetheless, its entire description is available in Documentation/IRQ-domain.txt, in
the kernel source tree. Its prototype is:

struct irq_domain *irq_domain_add_nomap(struct device_node

*of_node,

 unsigned int max_irq,

 const struct irq_domain_ops *ops,

 void *host_data)

of_node is a pointer to interrupt controller's DT node. size represents the number of
interrupts in the domain. ops represents map/unmap domain callbacks, and host_data is
the controller's private data pointer.

Since the IRQ domain began empty at creation time (no mapping), you should use
irq_create_mapping() function in order to create mapping and assign it to the domain.
In the next section, will we decide the right place in the code to create mappings:

unsigned int irq_create_mapping(struct irq_domain *domain,

 irq_hw_number_t hwirq)

domain : This is the domain to which this hardware interrupt belongs, or NULL
for default domain
Hwirq: This is the hardware IRQ number in that domain space

When writing driver for GPIO controllers that are also interrupt controllers,
irq_create_mapping() is called from within gpio_chip.to_irq() callback function,
like:

return irq_create_mapping(gpiochip->irq_domain, offset);

Other people prefer creating the mapping in advance for each hwirq inside the probe
function like:

for (j = 0; j < gpiochip->chip.ngpio; j++) {

 irq = irq_create_mapping(

 gpiochip ->irq_domain, j);

}

Advanced IRQ Management

[403]

hwirq is the GPIO offset from the gpiochip.

If a mapping for the hwirq doesn't already exist, the function will allocate a new Linux
irq_desc structure, associate it with the hwirq, and call the irq_domain_ops.map() (by
means of the irq_domain_associate() function) callback so that the driver can perform
any required hardware setup:

struct irq_domain_ops {

 int (*map)(struct irq_domain *d, unsigned int virq, irq_hw_number_t hw);

 void (*unmap)(struct irq_domain *d, unsigned int virq);

 int (*xlate)(struct irq_domain *d, struct device_node *node,

 const u32 *intspec, unsigned int intsize,

 unsigned long *out_hwirq, unsigned int *out_type);

};

.map(): This creates or updates a mapping between a virtual irq (virq) number
and a hwirq number. This is called only once for a given mapping. It generally
maps the virq with a given handler using irq_set_chip_and_handler*, so
that, calling generic_handle_irq() or handle_nested_irq will trigger the
right handler. The magic here is called the irq_set_chip_and_handler()
function:

void irq_set_chip_and_handler(unsigned int irq,

 struct irq_chip *chip, irq_flow_handler_t handle)

where:

irq: This is the Linux IRQ given as parameter to map() function.
chip: This is your irq_chip. Some controllers are quite dumb and need almost
nothing in their irq_chip structure. In this case, you should pass
dummy_irq_chip defined in kernel/irq/dummychip.c, which is a kernel
irq_chip structure defined for such controllers.

Advanced IRQ Management

[404]

handle: This determines the wrapper function that will call the real handler
register using request_irq(). Its value depends on the IRQ being edge or level-
triggered. In either case, handle should be set to handle_edge_irq, or
handle_level_irq. Both are kernel helper functions that do some trick before
and after calling the real IRQ handler. An example is shown as follows:

 static int pcf857x_irq_domain_map(struct irq_domain *domain,

 unsigned int irq, irq_hw_number_t hw)

 {

 struct pcf857x *gpio = domain->host_data;

 irq_set_chip_and_handler(irq, &dummy_irq_chip,handle_level_irq);

 #ifdef CONFIG_ARM

 set_irq_flags(irq, IRQF_VALID);

 #else

 irq_set_noprobe(irq);

 #endif

 gpio->irq_mapped |= (1 << hw);

 return 0;

 }

xlate: Given a DT node and interrupt specifier, this hook decodes the hardware
IRQ number and Linux IRQ type value. Depending on the #interrupt-cells
specified in your DT controller node, the kernel provides a generics translation
function:

irq_domain_xlate_twocell(): Generic translation function is
for direct two cell binding. DT IRQ specifier which works with two
cell bindings where the cell values map directly to the hwirq
number and Linux irq flags.
irq_domain_xlate_onecell(): Generic xlate for direct one cell
bindings.
irq_domain_xlate_onetwocell(): Generic xlate for one or two
cell bindings.

An example of domain operation is given as follows:

static struct irq_domain_ops mcp23016_irq_domain_ops = {

 .map = mcp23016_irq_domain_map,

 .xlate = irq_domain_xlate_twocell,

};

Advanced IRQ Management

[405]

When an interrupt is received, irq_find_mapping() function should be used to find the
Linux IRQ number from the hwirq number. Of course, the mapping must exist prior to
being returned. A Linux IRQ number is always tied to a struct irq_desc structure,
which is the structure by which Linux describes an IRQ:

struct irq_desc {

 struct irq_common_data irq_common_data;

 struct irq_data irq_data;

 unsigned int __percpu *kstat_irqs;

 irq_flow_handler_t handle_irq;

 struct irqaction *action;

 unsigned int irqs_unhandled;

 raw_spinlock_t lock;

 struct cpumask *percpu_enabled;

 atomic_t threads_active;

 wait_queue_head_t wait_for_threads;

#ifdef CONFIG_PM_SLEEP

 unsigned int nr_actions;

 unsigned int no_suspend_depth;

 unsigned int force_resume_depth;

#endif

#ifdef CONFIG_PROC_FS

 struct proc_dir_entry *dir;

#endif

 int parent_irq;

 struct module *owner;

 const char *name;

};

Some fields that are not described here are internal, and are used by the IRQ core:

irq_common_data is a per IRQ and chip data passed down to chip functions
kstat_irqs is per CPU IRQ statistics since boot
handle_irq is high level IRQ events handler
action represents the list of the IRQ action for this descriptor
irqs_unhandled is the stats field for spurious unhandled interrupts
lock represents locking for SMP
threads_active is the number of IRQ action threads currently running for this
descriptor
wait_for_threads represents the wait queue for sync_irq to wait for
threaded handlers
nr_actions is the number of installed actions on this descriptor

Advanced IRQ Management

[406]

no_suspend_depth and force_resume_depth represents the number of
irqactions on a IRQ descriptor with IRQF_NO_SUSPEND or
IRQF_FORCE_RESUME flags set
dir represents /proc/irq/ procfs entry
name names the flow handler, visible in /proc/interrupts output

The irq_desc.action field is a list of irqaction structures, each of which records the
address of an interrupt handler for the associated interrupt source. Each call to the kernel's
request_irq() function (or the threaded version o) creates an add one struct
irqaction structure to the end of the list. For example, for a shared interrupt, this field will
contain as many IRQ actions as there are handlers registered;

struct irqaction {

 irq_handler_t handler;

 void *dev_id;

 void __percpu *percpu_dev_id;

 struct irqaction *next;

 irq_handler_t thread_fn;

 struct task_struct *thread;

 unsigned int irq;

 unsigned int flags;

 unsigned long thread_flags;

 unsigned long thread_mask;

 const char *name;

 struct proc_dir_entry *dir;

};

handler is the non-threaded (hard) interrupt handler function
name is the device's name
dev_id is a cookie to identify the device
percpu_dev_id is a cookie to identify the device
next is a pointer to the next IRQ action for shared interrupts
irq is the Linux interrupt number
flags represent the IRQ's flags (see IRQF_*)
thread_fn is the threaded interrupt handler function for threaded interrupts
thread is a pointer to the thread structure in case of threaded interrupts
thread_flags represents the flags related to thread
thread_mask is a bitmask for keeping track of thread activity
dir points to the /proc/irq/NN/<name>/ entry

Advanced IRQ Management

[407]

Interrupt handlers referenced by the irqaction.handler field are simply functions
associated with the handling of interrupts from particular external devices, and they have
minimal knowledge (if any) of the means by which those interrupt requests are delivered to
the host microprocessor. They are not microprocessor-level interrupt service routines, and
therefore do not exit through RTE or similar interrupt-related opcodes. This makes
interrupt-driven device drivers largely portable across different microprocessor
architectures

The following is the definition of important fields of the struct irq_data structure,
which is a per IRQ chip data passed down to chip functions:

struct irq_data {

 [...]

 unsigned int irq;

 unsigned long hwirq;

 struct irq_common_data *common;

 struct irq_chip *chip;

 struct irq_domain *domain;

 void *chip_data;

};

irq is the interrupt number (Linux IRQ)
hwirq is the hardware interrupt number, local to the irq_data.domain
interrupt domain
common points to data shared by all irqchips
chip represents the low level interrupt controller hardware access
domain represents the interrupt translation domain, responsible for mapping
between the hwirq number and the Linux irq number
chip_data is a platform-specific per-chip private data for the chip methods, to
allow shared chip implementations

Advanced peripheral IRQs management
In Chapter 3, Kernel Facilities and Helper Functions, we introduced peripheral IRQs, using
request_irq() and request_threaded_irq(). With request_irq(), one registers a
handler (top half) that will be executed in atomic context, from which one can schedule a
bottom half using one of a differing mechanism discussed in that same chapter. On the
other hand, with request_thread_irq(), one can provide top and bottom halves to the
function, so that the former will be run as hardirq handler, which may decide to raise the
second and threaded handler, which will be run in a kernel thread.

Advanced IRQ Management

[408]

The problem with those approaches is that sometimes, drivers requesting an IRQ do not
know about the nature of the interrupt that provides this IRQ line, especially when the
interrupt controller is a discrete chip (typically a GPIO expander connected over SPI or I2C
buses). Now comes request_any_context_irq(), function with which drivers
requesting an IRQ know whether the handler will run in a thread context or not, and call
request_threaded_irq() or request_irq() accordingly. It means that whether the
IRQ associated to our device comes from an interrupt controller that may not sleep
(memory mapped one) or from one that can sleep (behind I2C/SPI bus), there will be no
need to change the code. Its prototype is the following:

int request_any_context_irq (unsigned int irq, irq_handler_t handler,

 unsigned long flags, const char * name, void * dev_id);

The following is the meaning of each parameter in the function:

irq represents the interrupt line to allocate.
handler is the function to be called when the IRQ occurs. Depending on the
context, this function may run as hardirq or may be threaded.
flags represents the interrupt type flags. It is the same as those in
request_irq().
name will be used for debug purposes to name the interrupt in
/proc/interrupts.
dev_id is a cookie passed back to the handler function.

request_any_context_irq() means that one can either get a hardirq or a treaded one. It
works like the usual request_irq(), except that it checks whether the IRQ level is
configured as nested or not, and calls the right backend. In other words, it selects either a
hardIRQ or threaded handling method depending on the context. This function returns a
negative value on failure. On success, it returns either IRQC_IS_HARDIRQ or
IRQC_IS_NESTED. The following is a use case:

static irqreturn_t packt_btn_interrupt(int irq, void *dev_id)

{

 struct btn_data *priv = dev_id;

 input_report_key(priv->i_dev, BTN_0,

 gpiod_get_value(priv->btn_gpiod) & 1);

 input_sync(priv->i_dev);

 return IRQ_HANDLED;

}

static int btn_probe(struct platform_device *pdev)

{

Advanced IRQ Management

[409]

 struct gpio_desc *gpiod;

 int ret, irq;

 [...]

 gpiod = gpiod_get(&pdev->dev, "button", GPIOD_IN);

 if (IS_ERR(gpiod))

 return -ENODEV;

 priv->irq = gpiod_to_irq(priv->btn_gpiod);

 priv->btn_gpiod = gpiod;

 [...]

 ret = request_any_context_irq(priv->irq,

 packt_btn_interrupt,

 (IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING),

 "packt-input-button", priv);

 if (ret < 0) {

 dev_err(&pdev->dev,

 "Unable to acquire interrupt for GPIO line\n");

 goto err_btn;

 }

 return ret;

}

The preceding code is an excerpt of the driver sample of an input device driver. Actually, it
is the one used in the next chapter. The advantage using request_any_context_irq() is
that, one does not need to care about what can be done in the IRQ handler, as the context in
which the handler will run depends on the interrupt controller that provides the IRQ line.
In our example, if the GPIO below to a controller seating on an I2C or SPI bus, the handler
will be threaded. Otherwise, the handler will run in hardirq.

Advanced IRQ Management

[410]

Interrupt request and propagation
Let us consider the following figure, which represents a chained IRQ flow

Interrupt requests are always performed on Linux IRQ (not hwirq). The general function to
request IRQ on Linux is request_threaded_irq() or request_irq(), which internally
calls the former:

int request_threaded_irq(unsigned int irq, irq_handler_t handler,

 irq_handler_t thread_fn, unsigned long irqflags,

 const char *devname, void *dev_id)

When called, the function extracts the struct irq_desc associated with the IRQ using the
irq_to_desc() macro. It then allocates a new struct irqaction structure and sets it
up, filling parameters such as handler, flags, and so on.

action->handler = handler;

action->thread_fn = thread_fn;

action->flags = irqflags;

action->name = devname;

action->dev_id = dev_id;

That same function finally inserts/registers the descriptor in the proper IRQ list by invoking
__setup_irq() (by means of setup_irq()) function, defined in kernel/irq/manage.c.

Advanced IRQ Management

[411]

Now, when an IRQ is raised, the kernel executes a few assembler codes in order to save the
current state, and jumps to the arch specific handler, handle_arch_irq, which is set with
the handle_irq field of struct machine_desc of our platform in the setup_arch()
function, in arch/arm/kernel/setup.c:

handle_arch_irq = mdesc->handle_irq

For SoCs that use ARM GIC, handle_irq callback is set with gic_handle_irq, in either
drivers/irqchip/irq-gic.c, or drivers/irqchip/irq-gic-v3.c:

set_handle_irq(gic_handle_irq);

gic_handle_irq() calls handle_domain_irq(), which executes
generic_handle_irq(), its turn calling generic_handle_irq_desc() that ends by
calling desc->handle_irq(). Have a look at include/linux/irqdesc.h for the last call
and arch/arm/kernel/irq.c for other function calls. handle_irq is the actual call for
the flow handler, which we registered as mcp23016_irq_handler.

gic_hande_irq() is a GIC interrupt handler. generic_handle_irq() will execute the
handler of the SoC's GPIO4 IRQ, which will look for GPIOs pin responsible for the
interrupt, and call generic_handle_irq_desc(), and so on. Now that you are familiar
with interrupt propagation, let us switch to a practical example by writing our own
interrupt controller.

Chaining IRQ
This section describes how interrupt handlers of a parent, call the child's interrupt handlers,
in turn calling their child's interrupt handlers, and so on. The kernel offers two approaches
on how to call interrupt handlers for child devices in the IRQ handler of the parent
(interrupt controller) device. These are the chained and nested methods:

Chained interrupts
This approach is used for SoC's internal GPIO controller, which are memory mapped and
whose access does not sleep. Chained means that those interrupts are just chains of function
calls (for example, SoC's GPIO module interrupt handler is being called from GIC interrupt
handler, just as a function call). generic_handle_irq() is used for interrupts chaining
child IRQ handlers and are called inside of the parent hwirq handler. Even from within the
child interrupt handlers, we still are in atomic context (HW interrupt). One cannot call
functions that may sleep.

Advanced IRQ Management

[412]

Nested interrupts
This method is used by controllers that sit on slow buses, like I2C (for example, GPIO
expander), and whose access may sleep (I2C functions may sleep). Nested means those
interrupts handlers that do not run in the HW context (they are not really hwirq, they are
not in atomic context), but they are threaded instead, and can be preempted (or interrupted
by another interrupt). handle_nested_irq() is used for creating nested interrupt child
IRQs. Handlers are being called inside of the new thread created by the
handle_nested_irq() function; we need them to be run in process context, so that we can
call sleeping bus functions (like I2C functions that may sleep).

Case study – GPIO and IRQ chip
Let us consider the following figure that ties an interrupt controller device to another one,
which we will use to describe interrupt multiplexing:

mcp23016 IRQ flow

Consider that you have configured io_1 and io_2 as interrupts. Even if interrupt happens
on io_1 or io_2, the same interrupt line will be triggered to the interrupt controller. Now
the GPIO driver has to figure out reading the interrupt status register of the GPIO to find
which interrupt (io_1 or io_2) has really fired. Therefore, in this case a single interrupt line
is a multiplex for 16 GPIO interrupts.

Advanced IRQ Management

[413]

Now let us mangle the original driver of the mcp23016 written in Chapter 15, GPIO
Controller Drivers – gpio_chip in order to support IRQ domain API first, which will let it act
as an interrupt controller as well. The second part will introduce the new and
recommended gpiolib irqchip API. This will be used as a step-by-step guide to write the
interrupt controller driver, at least for the GPIO controller:

Legacy GPIO and IRQ chip
The first step, allocate a struct irq_domain to our gpiochip that will store the1.
mapping between hwirq and virq. The linear mapping is suitable for us. We do
that in the probe function. That domain will hold the number of IRQ our drivers
wish to provide. For example, for an I/O expander, the number of IRQs could be
the number of GPIOs the expander provides:

my_gpiochip->irq_domain = irq_domain_add_linear(

client->dev.of_node,

 my_gpiochip->chip.ngpio, &mcp23016_irq_domain_ops,

NULL);

host_data parameter is NULL. Therefore, you can pass whatever data structure
you need. Prior to allocating the domain, our domain ops structure should be
defined:

static struct irq_domain_ops mcp23016_irq_domain_ops = {

 .map = mcp23016_irq_domain_map,

 .xlate = irq_domain_xlate_twocell,

};

And prior to filling our IRQ domain ops structure, we must define at least the
.map() callback:

static int mcp23016_irq_domain_map(

 struct irq_domain *domain,

 unsigned int virq, irq_hw_number_t hw)

{

 irq_set_chip_and_handler(virq,

 &dummy_irq_chip, /* Dumb irqchip */

 handle_level_irq); /* Level trigerred irq */

 return 0;

}

Advanced IRQ Management

[414]

Our controller is not smart enough. There is then no need to set up an irq_chip.
We will use the one provided by the kernel for this kind of chip:
dummy_irq_chip. Some controllers are smart enough and need an irq_chip to
be set up. Have a look in drivers/gpio/gpio-mcp23s08.c.

The next ops callback is .xlate. Here again, we use a helper provided by the
kernel. irq_domain_xlate_twocell is a helper able to parse an interrupt
specifier with two cells. We can add this interrupt-cells = <2>; in our
controller DT node.

The next step is to fill the domain with IRQ mappings, using2.
irq_create_mapping() function. In our driver, will do it in the
gpiochip.to_irq callback, so that whenever someone will call
gpio{d}_to_irq() on the GPIO, the mapping will be returned if it exists, or it
will be created if it doesn't:

static int mcp23016_to_irq(struct gpio_chip *chip,

 unsigned offset)

{

 return irq_create_mapping(chip->irq_domain, offset);

}

We could have done that for each GPIO in the probe function, and just call
irq_find_mapping() in .to_irq function.

Now still in the probe function, we need to register our controller's IRQ handler,3.
which in turn is responsible for calling the right handler that raised the interrupt
on its pins:

devm_request_threaded_irq(client->irq, NULL,

 mcp23016_irq, irqflags,

 dev_name(chip->parent), mcp);

The function mcp23016 should have been defined prior to registering the IRQ:

static irqreturn_t mcp23016_irq(int irq, void *data)

{

 struct mcp23016 *mcp = data;

 unsigned int child_irq, i;

 /* Do some stuff */

 [...]

 for (i = 0; i < mcp->chip.ngpio; i++) {

 if (gpio_value_changed_and_raised_irq(i)) {

 child_irq =

 irq_find_mapping(mcp->chip.irqdomain, i);

Advanced IRQ Management

[415]

 handle_nested_irq(child_irq);

 }

 }

 return IRQ_HANDLED;

}

handle_nested_irq() already descried in the preceding section will create a dedicated
thread for each handler registered.

New gpiolib irqchip API
Almost every GPIO controller driver was using IRQ domain for the same purpose. Instead
of each of them rolling their own irqdomain handling and so on, kernel developers decided
to move that code to gpiolib framework, by means of GPIOLIB_IRQCHIP Kconfig symbol,
in order to harmonize the development and avoid redundant code.

That portion of code helps in handling management of GPIO irqchips and the associated
irq_domain and resource allocation callbacks, as well as their setup, using the reduced set
of helper functions. These are gpiochip_irqchip_add() and
gpiochip_set_chained_irqchip().

gpiochip_irqchip_add(): This adds an irqchip to a gpiochip. What this function does:

Sets gpiochip.to_irq field to gpiochip_to_irq, which is an IRQ callback that
just returns irq_find_mapping(chip->irqdomain, offset);
Allocates an irq_domain to the gpiochip using irq_domain_add_simple()
function, passing a kernel IRQ core irq_domain_ops called
gpiochip_domain_ops and defined in drivers/gpio/gpiolib.c
Create mapping from 0 to gpiochip.ngpio using irq_create_mapping()
function

Its prototype is as follows:

int gpiochip_irqchip_add(struct gpio_chip *gpiochip,

 struct irq_chip *irqchip,

 unsigned int first_irq,

 irq_flow_handler_t handler,

 unsigned int type)

Advanced IRQ Management

[416]

Where gpiochip is our GPIO chip, the one to add the irqchip to, irqchip is the irqchip to
add to the gpiochip. first_irq if not dynamically assigned, is the base (first) IRQ to
allocate gpiochip IRQs from. handler is the IRQ handler to use (often a predefined IRQ
core function), and type is the default type for IRQs on this irqchip, pass IRQ_TYPE_NONE
to have the core avoid setting up any default type in the hardware.

This function will handle two celled simple IRQs (because it sets
irq_domain_ops.xlate to irq_domain_xlate_twocell) and assumes
all the pins on the gpiochip can generate a unique IRQ.

static const struct irq_domain_ops gpiochip_domain_ops = {

 .map = gpiochip_irq_map,

 .unmap = gpiochip_irq_unmap,

 /* Virtually all GPIO irqchips are twocell:ed */

 .xlate = irq_domain_xlate_twocell,

};

gpiochip_set_chained_irqchip(): This function sets a chained irqchip to a gpio_chip
from a parent IRQ and passes a pointer to the struct gpio_chip as handler data:

void gpiochip_set_chained_irqchip(struct gpio_chip *gpiochip,

 struct irq_chip *irqchip, int parent_irq,

 irq_flow_handler_t parent_handler)

parent_irq is the IRQ number to which this chip is connected. In case of our mcp23016 as
shown in the figure in the section Case study-GPIO and IRQ chip, it corresponds to the IRQ of
gpio4_29 line. In other words, it is the parent IRQ number for this chained irqchip.
parent_handler is the parent interrupt handler for the accumulated IRQ coming out of
the gpiochip. If the interrupt is nested rather than cascaded (chained), pass NULL in this
handler argument.

With this new API, the only code to add to our probe function is:

/* Do we have an interrupt line? Enable the irqchip */

if (client->irq) {

 status = gpiochip_irqchip_add(&gpio->chip, &dummy_irq_chip,

 0, handle_level_irq, IRQ_TYPE_NONE);

 if (status) {

 dev_err(&client->dev, "cannot add irqchip\n");

 goto fail_irq;

 }

 status = devm_request_threaded_irq(&client->dev, client->irq,

 NULL, mcp23016_irq, IRQF_ONESHOT |

 IRQF_TRIGGER_FALLING | IRQF_SHARED,

Advanced IRQ Management

[417]

 dev_name(&client->dev), gpio);

 if (status)

 goto fail_irq;

 gpiochip_set_chained_irqchip(&gpio->chip,

 &dummy_irq_chip, client->irq, NULL);

}

IRQ core does everything for us. No need to define even the gpiochip.to_irq function,
since the API already sets it. Our example uses the IRQ core dummy_irq_chip, but one
could have defined its own as well. Since the v4.10 version of the kernel, two other
functions have been added: these are gpiochip_irqchip_add_nested() and
gpiochip_set_nested_irqchip(). Have a look at Documentation/gpio/driver.txt for more
details. A driver that uses this API in the same kernel version is drivers/gpio/gpio-
mcp23s08.c.

Interrupt controller and DT
Now we will declare our controller in the DT. If you remember in Chapter 6: The Concept of
Device Tree, every interrupt controller must have the Boolean property interrupt-controller
set. The second mandatory Boolean property is gpio-controller, since it is a GPIO
controller too. We need to define how many cells are needed for an interrupt specifier for
our device. Since we have set the irq_domain_ops.xlate field to
irq_domain_xlate_twocell, #interrupt-cells should be 2:

expander: mcp23016@20 {

 compatible = "microchip,mcp23016";

 reg = <0x20>;

 interrupt-controller;

 #interrupt-cells = <2>;

 gpio-controller;

 #gpio-cells = <2>;

 interrupt-parent = <&gpio4>;

 interrupts = <29 IRQ_TYPE_EDGE_FALLING>;

};

interrupt-parent and interrupts properties are describing interrupt line connection.

Advanced IRQ Management

[418]

Finally, let us say that we have a driver for mcp23016 and drivers for two other devices:
foo_device and bar_device, all running in the CPU of course. In the foo_device driver,
one wants to request interrupt for events when foo_device changes level on the io_2 pin
of mcp23016. The bar_device driver requires io_8 and io_12 respectively for reset and
power GPIOs. Let us declare this in the DT:

foo_device: foo_device@1c {

 reg = <0x1c>;

 interrupt-parent = <&expander>;

 interrupts = <2 IRQ_TYPE_EDGE_RISING>;

};

bar_device {

 reset-gpios = <&expander 8 GPIO_ACTIVE_HIGH>;

 power-gpios = <&expander 12 GPIO_ACTIVE_HIGH>;

 /* Other properties do here */

};

Summary
Now IRQ multiplexing has no more secrets for you. We discussed the most important
elements of IRQ management under Linux systems, the IRQ domain API. You have the
basics to develop interrupt controller drivers, as well as managing their binding from
within the DT. IRQ propagation has been discussed in order to understand what happens
from the request to the handling. This chapter will help you to understand the interrupt
driven part of the next chapter, which deals with input device drivers.

17
Input Devices Drivers

Input devices are devices by which one can interact with the system. Such devices are
buttons, keyboards, touchscreens, mouse, and so on. They work by sending events, caught
and broadcasted over the system by the input core. This chapter will explain each structure
used by input core to handle input devices. That being said, we will see how one can
manage events from the user space.

In this chapter, we will cover following topics:

Input core data structures
Allocating and registering input devices, and well as polled devices family
Generating and reporting events to the input core
Input device from user space
Writing a driver example

Input device structures
First of all, the main file to include in order to interface with the input subsystem is
linux/input.h:

#include <linux/input.h>

Whatever type of input device it is, whatever type of event it sends, an input device is
represented in the kernel as an instance of struct input_dev:

struct input_dev {

 const char *name;

 const char *phys;

 unsigned long evbit[BITS_TO_LONGS(EV_CNT)];

Input Devices Drivers

[420]

 unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];

 unsigned long relbit[BITS_TO_LONGS(REL_CNT)];

 unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];

 unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];

 unsigned int repeat_key;

 int rep[REP_CNT];

 struct input_absinfo *absinfo;

 unsigned long key[BITS_TO_LONGS(KEY_CNT)];

 int (*open)(struct input_dev *dev);

 void (*close)(struct input_dev *dev);

 unsigned int users;

 struct device dev;

 unsigned int num_vals;

 unsigned int max_vals;

 struct input_value *vals;

 bool devres_managed;

};

The meaning of the fields are as follows:

name represents the name of the device.
phys is the physical path to the device in the system hierarchy.
evbit is a bitmap of types of events supported by the device. Some types of areas
are as follows:

EV_KEY for devices supporting sending key events (keyboards,
button, and so on)
EV_REL for device supporting sending relative positions (mouse,
digitizers, and so on)
EV_ABS for device supporting sending absolute positions(joystick)

The list of events is available in the kernel source in the include/linux/input-
event-codes.h file. One uses the set_bit() macro in order to set the
appropriate bit depending on our input device capabilities. Of course a device can
support more than one type of event. For example, a mouse will set both EV_KEY
and EV_REL.

set_bit(EV_KEY, my_input_dev->evbit);

set_bit(EV_REL, my_input_dev->evbit);

Input Devices Drivers

[421]

keybit is for an EV_KEY type enabled device, a bitmap of keys/buttons that this
device exposes. For example, BTN_0, KEY_A, KEY_B, and so on. The complete list
of keys/buttons is in the include/linux/input-event-codes.h file.
relbit is for an EV_REL type enabled device, a bitmap of relative axes for the
device. For example, REL_X, REL_Y, REL_Z, REL_RX, and so on. Have a look at
include/linux/input-event-codes.h for the complete list.
absbit is for an EV_ABS type enabled device, bitmap of absolute axes for the
device. For example, ABS_Y, ABS_X, and so on. Have a look at the same previous
file for the complete list.
mscbit is for EV_MSC type enabled device, a bitmap of miscellaneous events
supported by the device.
repeat_key stores the key code of the last key pressed; used to implement
software auto repeat.
rep, current values for auto repeat parameters (delay, rate).
absinfo is an array of &struct input_absinfo elements holding information
about absolute axes (current value, min, max, flat, fuzz, resolution). You should
use the input_set_abs_params() function in order to set those values.

void input_set_abs_params(struct input_dev *dev, unsigned int axis,

 int min, int max, int fuzz, int flat)

min and max specify lower and upper bound values. fuzz indicates the expected
noise on the specified channel of the specified input device. The following is an
example in which we set each channel's bound only:

#define ABSMAX_ACC_VAL 0x01FF

#define ABSMIN_ACC_VAL -(ABSMAX_ACC_VAL)

[...]

set_bit(EV_ABS, idev->evbit);

input_set_abs_params(idev, ABS_X, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

input_set_abs_params(idev, ABS_Y, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

input_set_abs_params(idev, ABS_Z, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

key reflects the current state of the device's keys/buttons.
open is a method called when the very first user calls input_open_device().
Use this method to prepare the device, such as interrupt request, polling thread
start, and so on.

Input Devices Drivers

[422]

close is called when the very last user calls input_close_device(). Here you
can stop polling (which consumes lot of resource).
users stores the number of users (input handlers) that opened this device. It is
used by input_open_device() and input_close_device() to make sure that
dev->open() is only called when the first user opens the device and
dev->close() is called when the very last user closes the device.
dev is the struct device associated with this device (for device model).
num_vals is the number of values queued in the current frame.
max_vals is the maximum number of values queued in a frame.
Vals is the array of values queued in the current frame.
devres_managed indicates that devices are managed with devres framework
and needs not be explicitly unregistered or freed.

Allocating and registering an input device
Prior to the registering and sending the event with an input device, it should be allocated
with the input_allocate_device() function. In order to free the previously allocated
memory for a non-registered input device, input_free_device() function should be
used. If the device has already been registered, input_unregister_device() should be
used instead. Like every function where memory allocation is needed, we can use a
resource-managed version of functions:

struct input_dev *input_allocate_device(void)

struct input_dev *devm_input_allocate_device(struct device *dev)

void input_free_device(struct input_dev *dev)

static void devm_input_device_unregister(struct device *dev,

 void *res)

int input_register_device(struct input_dev *dev)

void input_unregister_device(struct input_dev *dev)

Device allocation may sleep and therefore must not be called in the atomic context or with a
spinlock held.

Input Devices Drivers

[423]

The following is an excerpt of the probe function of an input device siting on the I2C bus:

struct input_dev *idev;

int error;

idev = input_allocate_device();

if (!idev)

 return -ENOMEM;

idev->name = BMA150_DRIVER;

idev->phys = BMA150_DRIVER "/input0";

idev->id.bustype = BUS_I2C;

idev->dev.parent = &client->dev;

set_bit(EV_ABS, idev->evbit);

input_set_abs_params(idev, ABS_X, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

input_set_abs_params(idev, ABS_Y, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

input_set_abs_params(idev, ABS_Z, ABSMIN_ACC_VAL,

 ABSMAX_ACC_VAL, 0, 0);

error = input_register_device(idev);

if (error) {

 input_free_device(idev);

 return error;

}

error = request_threaded_irq(client->irq,

 NULL, my_irq_thread,

 IRQF_TRIGGER_RISING | IRQF_ONESHOT,

 BMA150_DRIVER, NULL);

if (error) {

 dev_err(&client->dev, "irq request failed %d, error %d\n",

 client->irq, error);

 input_unregister_device(bma150->input);

 goto err_free_mem;

}

Polled input device sub-class
Polled input devices is a special type of input device, which relies on polling to sense device
state changes, whereas the generic input device type relies on IRQ to sense change and send
events to the input core.

Input Devices Drivers

[424]

A polled input device is described in the kernel as an instance of struct
input_polled_dev structure, which is a wrapper around the generic struct input_dev
structure:

struct input_polled_dev {

 void *private;

 void (*open)(struct input_polled_dev *dev);

 void (*close)(struct input_polled_dev *dev);

 void (*poll)(struct input_polled_dev *dev);

 unsigned int poll_interval; /* msec */

 unsigned int poll_interval_max; /* msec */

 unsigned int poll_interval_min; /* msec */

 struct input_dev *input;

 bool devres_managed;

};

The following are the meanings of elements in this structure:

private is the driver's private data.
open is an optional method that prepares a device for polling (enabled the device
and maybe flushes device state).
close is an optional method that is called when the device is no longer being
polled. It is used to put devices into the low power mode.
poll is a mandatory method called whenever the device needs to be polled. It is
called at the frequency of poll_interval.
poll_interval is the frequency at which the poll() method should be called.
Defaults to 500 msec unless overridden when registering the device.
poll_interval_max specifies the upper bound for the poll interval. Defaults to
the initial value of poll_interval.
poll_interval_min specifies the lower bound for the poll interval. Defaults to
0.
input is the input device around which the polled device is built. It must be
properly initialized by the driver (ID, name, bits). Polled input device just
provides an interface to use polling instead of IRQ, to sense device state change.

Input Devices Drivers

[425]

Allocating/freeing the struct input_polled_dev structure is done using
input_allocate_polled_device() and input_free_polled_device(). You should
take care of initializing mandatory fields of the struct input_dev embedded in it. Polling
interval should be set too, otherwise, it defaults to 500 msec. One can use resource manage
version too. Both prototypes are as follows:

struct input_polled_dev *devm_input_allocate_polled_device(struct

device *dev)

struct input_polled_dev *input_allocate_polled_device(void)

void input_free_polled_device(struct input_polled_dev *dev)

For resource-managed devices, the field input_dev->devres_managed
will be set to true by the input core.

After allocation and proper fields initialization, the polled input device can be registered
using input_register_polled_device(), which returns 0 on success. The reverse
operation (unregister) is done with the input_unregister_polled_device() function:

int input_register_polled_device(struct input_polled_dev *dev)

void input_unregister_polled_device(struct input_polled_dev *dev)

A typical example of the probe() function for such a device looks as follows:

static int button_probe(struct platform_device *pdev)

{

 struct my_struct *ms;

 struct input_dev *input_dev;

 int retval;

 ms = devm_kzalloc(&pdev->dev, sizeof(*ms), GFP_KERNEL);

 if (!ms)

 return -ENOMEM;

 ms->poll_dev = input_allocate_polled_device();

 if (!ms->poll_dev){

 kfree(ms);

 return -ENOMEM;

 }

 /* This gpio is not mapped to IRQ */

 ms->reset_btn_desc = gpiod_get(dev, "reset", GPIOD_IN);

 ms->poll_dev->private = ms ;

 ms->poll_dev->poll = my_btn_poll;

 ms->poll_dev->poll_interval = 200; /* Poll every 200ms */

 ms->poll_dev->open = my_btn_open; /* consist */

Input Devices Drivers

[426]

 input_dev = ms->poll_dev->input;

 input_dev->name = "System Reset Btn";

 /* The gpio belong to an expander sitting on I2C */

 input_dev->id.bustype = BUS_I2C;

 input_dev->dev.parent = &pdev->dev;

 /* Declare the events generated by this driver */

 set_bit(EV_KEY, input_dev->evbit);

 set_bit(BTN_0, input_dev->keybit); /* buttons */

 retval = input_register_polled_device(mcp->poll_dev);

 if (retval) {

 dev_err(&pdev->dev, "Failed to register input device\n");

 input_free_polled_device(ms->poll_dev);

 kfree(ms);

 }

 return retval;

}

The following is how our struct my_struct structure looks:

struct my_struct {

 struct gpio_desc *reset_btn_desc;

 struct input_polled_dev *poll_dev;

}

And following is how the open function looks:

static void my_btn_open(struct input_polled_dev *poll_dev)

{

 struct my_strut *ms = poll_dev->private;

 dev_dbg(&ms->poll_dev->input->dev, "reset open()\n");

}

The open method is used to prepare resources needed by the device. We do not really need
this method for this example.

Input Devices Drivers

[427]

Generating and reporting an input event
Device allocation and registration are essential, but they are not the main goal of an input
device driver, which is designed to report even to the input core. Depending on the type of
event your device can support, the kernel provides appropriate APIs to report them to the
core.

Given an EV_XXX capable device, the corresponding report function would be
input_report_xxx(). The following table shows a mapping between the most important
event types and their report functions:

Event
type

Report function Code example

EV_KEY input_report_key() input_report_key(poll_dev->input, BTN_0,

gpiod_get_value(ms-> reset_btn_desc) & 1);

EV_REL input_report_rel() input_report_rel(nunchuk->input, REL_X,

(nunchuk->report.joy_x - 128)/10);

EV_ABS input_report_abs() input_report_abs(bma150->input, ABS_X,

x_value);
input_report_abs(bma150->input, ABS_Y,

y_value);
input_report_abs(bma150->input, ABS_Z,

z_value);

Their respective prototypes are as follows:

void input_report_abs(struct input_dev *dev,

 unsigned int code, int value)

void input_report_key(struct input_dev *dev,

 unsigned int code, int value)

void input_report_rel(struct input_dev *dev,

 unsigned int code, int value)

Input Devices Drivers

[428]

The list of available report functions can be found in include/linux/input.h in the
kernel source file. They all have the same skeleton:

dev is the input device responsible for the event.
code represents the event code, for example,REL_X or KEY_BACKSPACE. The
complete list is in include/linux/input-event-codes.h.
value is the value the event carries. For EV_REL event type, it carries the relative
change. For a EV_ABS (joysticks and so on.) event type, it contains an absolute
new value. For EV_KEY event type, it should be set to 0 for key release, 1 for key
press, and 2 for auto repeat.

After all changes have been reported, the driver should call input_sync() on the input
device, in order to indicate that this event is complete. The input subsystem will collect
these into a single packet and send it through /dev/input/event<X>, which is the
character device representing our struct input_dev on the system, and where <X> is the
interface number assigned to the driver by the input core:

void input_sync(struct input_dev *dev)

Let us see an example, which is an excerpt of the bma150 digital acceleration sensors drivers
in drivers/input/misc/bma150.c:

static void threaded_report_xyz(struct bma150_data *bma150)

{

 u8 data[BMA150_XYZ_DATA_SIZE];

 s16 x, y, z;

 s32 ret;

 ret = i2c_smbus_read_i2c_block_data(bma150->client,

 BMA150_ACC_X_LSB_REG, BMA150_XYZ_DATA_SIZE, data);

 if (ret != BMA150_XYZ_DATA_SIZE)

 return;

 x = ((0xc0 & data[0]) >> 6) | (data[1] << 2);

 y = ((0xc0 & data[2]) >> 6) | (data[3] << 2);

 z = ((0xc0 & data[4]) >> 6) | (data[5] << 2);

 /* sign extension */

 x = (s16) (x << 6) >> 6;

 y = (s16) (y << 6) >> 6;

 z = (s16) (z << 6) >> 6;

 input_report_abs(bma150->input, ABS_X, x);

 input_report_abs(bma150->input, ABS_Y, y);

 input_report_abs(bma150->input, ABS_Z, z);

Input Devices Drivers

[429]

 /* Indicate this event is complete */

 input_sync(bma150->input);

}

In the preceding sample, input_sync() tells the core to consider the three reports as the
same event. It makes sense since the position has three axes (X, Y, Z) and we do not want X,
Y, or Z to be reported separately.

The best place to report the event is inside the poll function for a polled device, or inside
the IRQ routine (threaded part or not) for an IRQ enabled device. If you perform some
operations that may sleep, you should process your report inside the threaded part of the
IRQ handled:

static void my_btn_poll(struct input_polled_dev *poll_dev)

{

 struct my_struct *ms = poll_dev->private;

 struct i2c_client *client = mcp->client;

 input_report_key(poll_dev->input, BTN_0,

 gpiod_get_value(ms->reset_btn_desc) & 1);

 input_sync(poll_dev->input);

}

User space interface
Every registered input device is represented by a /dev/input/event<X> char device, from
which we can read the event from the user space. An application reading this file will
receive event packets in the struct input_event format:

struct input_event {

 struct timeval time;

 __u16 type;

 __u16 code;

 __s32 value;

}

Let us see the meaning of each element in the structure:

time is the timestamp, it returns the time at which the event happened.
type is the event type. For example, EV_KEY for a key press or release, EV_REL
for relative moment, or EV_ABS for an absolute one. More types are defined in
include/linux/input-event-codes.h.
code is the event code, for example: REL_X or KEY_BACKSPACE, again a complete
list is in include/linux/input-event-codes.h.

Input Devices Drivers

[430]

value is the value that the event carries. For EV_REL event type, it carries the
relative change. For an EV_ABS (joysticks and so on) event type, it contains the
absolute new value. For EV_KEY event type, it should be set to 0 for key release, 1
for keypress and 2 for auto repeat.

A user space application can use blocking and non-blocking reads, but also poll() or
select() system calls in order to get notified of events after opening this device. Following
is an example with select() system call, with the complete source code provided in the
book source repository:

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <linux/input.h>

#include <sys/select.h>

#define INPUT_DEVICE "/dev/input/event1"

int main(int argc, char **argv)

{

 int fd;

 struct input_event event;

 ssize_t bytesRead;

 int ret;

 fd_set readfds;

 fd = open(INPUT_DEVICE, O_RDONLY);

 /* Let's open our input device */

 if(fd < 0){

 fprintf(stderr, "Error opening %s for reading", INPUT_DEVICE);

 exit(EXIT_FAILURE);

 }

 while(1){

 /* Wait on fd for input */

 FD_ZERO(&readfds);

 FD_SET(fd, &readfds);

 ret = select(fd + 1, &readfds, NULL, NULL, NULL);

 if (ret == -1) {

 fprintf(stderr, "select call on %s: an error ocurred",

 INPUT_DEVICE);

 break;

 }

Input Devices Drivers

[431]

 else if (!ret) { /* If we have decided to use timeout */

 fprintf(stderr, "select on %s: TIMEOUT", INPUT_DEVICE);

 break;

 }

 /* File descriptor is now ready */

 if (FD_ISSET(fd, &readfds)) {

 bytesRead = read(fd, &event,

 sizeof(struct input_event));

 if(bytesRead == -1)

 /* Process read input error*/

 if(bytesRead != sizeof(struct input_event))

 /* Read value is not an input even */

 /*

 * We could have done a switch/case if we had

 * many codes to look for

 */

 if(event.code == BTN_0) {

 /* it concerns our button */

 if(event.value == 0){

 /* Process Release */

 [...]

 }

 else if(event.value == 1){

 /* Process KeyPress */

 [...]

 }

 }

 }

 }

 close(fd);

 return EXIT_SUCCESS;

}

Putting it all together
So far, we have described structures used when writing drivers for input devices, and how
they can be managed from the user space.

Allocate a new input device, according to its type, polled or not, using1.
input_allocate_polled_device() or input_allocate_device().
Fill in the mandatory fields or not (if necessary):2.

Specify type of event the device supports by using set_bit()
helper macro on the input_dev.evbit field

Input Devices Drivers

[432]

Depending on event type, EV_REL, EV_ABS, EV_KEY or other,
indicate code this device can report using either
input_dev.relbit, input_dev.absbit, input_dev.keybit, or
other.
Specify input_dev.dev in order to set up a proper device tree
Fill abs_info if necessary
For polled device, indicate at which interval the poll() function
should be called:

Write your open() function if necessary, in which you should prepare and set up3.
resource used by the device. This function is called only once. In this function,
setup GPIO, request interrupt if needed, initialize the device.
Write your close() function, in which you will release and deallocate what you4.
have done in the open() function. For example, free GPIO, IRQ, put device to
power saving mode.
Pass either your open() or close() function (or both) to input_dev.open and5.
input_dev.close fields.
Register your device using input_register_polled_device() if polled, or6.
input_register_device() if not.
In your IRQ function (threaded or not) or in your poll() function, gather and7.
report events depending on their types, using either input_report_key(),
input_report_rel(), input_report_abs() or other, and then, call
input_sync() on the input device to indicate the end of frame (the report is
complete).

The usual way is to use classic input devices if no IRQ is provided, or else fall back to polled
device:

if(client->irq > 0){

 /* Use generic input device */

} else {

 /* Use polled device */

}

To see how to manage such devices from the user space, please refer to the example
provided within the source of the book.

Input Devices Drivers

[433]

Driver examples
One can summarize thing in the two following drivers. The first one is a polled input
device, based on a GPIO non-mapped to IRQ. The polled input core will poll the GPIO to
sense any change. This driver is configured to send 0 key code. Each GPIO state
corresponds either to key press or key release:

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/slab.h>

#include <linux/of.h> /* For DT*/

#include <linux/platform_device.h> /* For platform devices */

#include <linux/gpio/consumer.h> /* For GPIO Descriptor interface */

#include <linux/input.h>

#include <linux/input-polldev.h>

struct poll_btn_data {

 struct gpio_desc *btn_gpiod;

 struct input_polled_dev *poll_dev;

};

static void polled_btn_open(struct input_polled_dev *poll_dev)

{

 /* struct poll_btn_data *priv = poll_dev->private; */

 pr_info("polled device opened()\n");

}

static void polled_btn_close(struct input_polled_dev *poll_dev)

{

 /* struct poll_btn_data *priv = poll_dev->private; */

 pr_info("polled device closed()\n");

}

static void polled_btn_poll(struct input_polled_dev *poll_dev)

{

 struct poll_btn_data *priv = poll_dev->private;

 input_report_key(poll_dev->input, BTN_0,

gpiod_get_value(priv->btn_gpiod) & 1);

 input_sync(poll_dev->input);

}

static const struct of_device_id btn_dt_ids[] = {

 { .compatible = "packt,input-polled-button", },

 { /* sentinel */ }

};

Input Devices Drivers

[434]

static int polled_btn_probe(struct platform_device *pdev)

{

 struct poll_btn_data *priv;

 struct input_polled_dev *poll_dev;

 struct input_dev *input_dev;

 int ret;

 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);

 if (!priv)

 return -ENOMEM;

 poll_dev = input_allocate_polled_device();

 if (!poll_dev){

 devm_kfree(&pdev->dev, priv);

 return -ENOMEM;

 }

 /* We assume this GPIO is active high */

 priv->btn_gpiod = gpiod_get(&pdev->dev, "button", GPIOD_IN);

 poll_dev->private = priv;

 poll_dev->poll_interval = 200; /* Poll every 200ms */

 poll_dev->poll = polled_btn_poll;

 poll_dev->open = polled_btn_open;

 poll_dev->close = polled_btn_close;

 priv->poll_dev = poll_dev;

 input_dev = poll_dev->input;

 input_dev->name = "Packt input polled Btn";

 input_dev->dev.parent = &pdev->dev;

 /* Declare the events generated by this driver */

 set_bit(EV_KEY, input_dev->evbit);

 set_bit(BTN_0, input_dev->keybit); /* buttons */

 ret = input_register_polled_device(priv->poll_dev);

 if (ret) {

 pr_err("Failed to register input polled device\n");

 input_free_polled_device(poll_dev);

 devm_kfree(&pdev->dev, priv);

 return ret;

 }

 platform_set_drvdata(pdev, priv);

 return 0;

}

static int polled_btn_remove(struct platform_device *pdev)

{

Input Devices Drivers

[435]

 struct poll_btn_data *priv = platform_get_drvdata(pdev);

 input_unregister_polled_device(priv->poll_dev);

 input_free_polled_device(priv->poll_dev);

 gpiod_put(priv->btn_gpiod);

 return 0;

}

static struct platform_driver mypdrv = {

 .probe = polled_btn_probe,

 .remove = polled_btn_remove,

 .driver = {

 .name = "input-polled-button",

 .of_match_table = of_match_ptr(btn_dt_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Polled input device");

This second driver sends events to the input core according to the IRQ on which the
button's GPIO is mapped. When using IRQ to sense key press or release, it is a good
practice to trig the interrupt on edge change:

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/slab.h>

#include <linux/of.h> /* For DT*/

#include <linux/platform_device.h> /* For platform devices */

#include <linux/gpio/consumer.h> /* For GPIO Descriptor interface */

#include <linux/input.h>

#include <linux/interrupt.h>

struct btn_data {

 struct gpio_desc *btn_gpiod;

 struct input_dev *i_dev;

 struct platform_device *pdev;

 int irq;

};

static int btn_open(struct input_dev *i_dev)

{

 pr_info("input device opened()\n");

 return 0;

}

Input Devices Drivers

[436]

static void btn_close(struct input_dev *i_dev)

{

 pr_info("input device closed()\n");

}

static irqreturn_t packt_btn_interrupt(int irq, void *dev_id)

{

 struct btn_data *priv = dev_id;

 input_report_key(priv->i_dev, BTN_0, gpiod_get_value(priv->btn_gpiod) &

1);

 input_sync(priv->i_dev);

 return IRQ_HANDLED;

}

static const struct of_device_id btn_dt_ids[] = {

 { .compatible = "packt,input-button", },

 { /* sentinel */ }

};

static int btn_probe(struct platform_device *pdev)

{

 struct btn_data *priv;

 struct gpio_desc *gpiod;

 struct input_dev *i_dev;

 int ret;

 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);

 if (!priv)

 return -ENOMEM;

 i_dev = input_allocate_device();

 if (!i_dev)

 return -ENOMEM;

 i_dev->open = btn_open;

 i_dev->close = btn_close;

 i_dev->name = "Packt Btn";

 i_dev->dev.parent = &pdev->dev;

 priv->i_dev = i_dev;

 priv->pdev = pdev;

 /* Declare the events generated by this driver */

 set_bit(EV_KEY, i_dev->evbit);

 set_bit(BTN_0, i_dev->keybit); /* buttons */

 /* We assume this GPIO is active high */

 gpiod = gpiod_get(&pdev->dev, "button", GPIOD_IN);

Input Devices Drivers

[437]

 if (IS_ERR(gpiod))

 return -ENODEV;

 priv->irq = gpiod_to_irq(priv->btn_gpiod);

 priv->btn_gpiod = gpiod;

 ret = input_register_device(priv->i_dev);

 if (ret) {

 pr_err("Failed to register input device\n");

 goto err_input;

 }

 ret = request_any_context_irq(priv->irq,

 packt_btn_interrupt,

 (IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING),

 "packt-input-button", priv);

 if (ret < 0) {

 dev_err(&pdev->dev,

 "Unable to acquire interrupt for GPIO line\n");

 goto err_btn;

 }

 platform_set_drvdata(pdev, priv);

 return 0;

err_btn:

 gpiod_put(priv->btn_gpiod);

err_input:

 printk("will call input_free_device\n");

 input_free_device(i_dev);

 printk("will call devm_kfree\n");

 return ret;

}

static int btn_remove(struct platform_device *pdev)

{

 struct btn_data *priv;

 priv = platform_get_drvdata(pdev);

 input_unregister_device(priv->i_dev);

 input_free_device(priv->i_dev);

 free_irq(priv->irq, priv);

 gpiod_put(priv->btn_gpiod);

 return 0;

}

static struct platform_driver mypdrv = {

 .probe = btn_probe,

 .remove = btn_remove,

Input Devices Drivers

[438]

 .driver = {

 .name = "input-button",

 .of_match_table = of_match_ptr(btn_dt_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Input device (IRQ based)");

For both examples, when a device matches the module, a node will be created in
/dev/input directory. The node corresponds to event0 in our example. One can use
udevadm tool in order to display information about the device:

udevadm info /dev/input/event0
P: /devices/platform/input-button.0/input/input0/event0
N: input/event0
S: input/by-path/platform-input-button.0-event
E: DEVLINKS=/dev/input/by-path/platform-input-button.0-event
E: DEVNAME=/dev/input/event0
E: DEVPATH=/devices/platform/input-button.0/input/input0/event0
E: ID_INPUT=1
E: ID_PATH=platform-input-button.0
E: ID_PATH_TAG=platform-input-button_0
E: MAJOR=13
E: MINOR=64
E: SUBSYSTEM=input
E: USEC_INITIALIZED=74842430

The tool that actually allows us to print the event key to the screen is evtest, given the
path of the input device:

evtest /dev/input/event0
input device opened()
Input driver version is 1.0.1
Input device ID: bus 0x0 vendor 0x0 product 0x0 version 0x0
Input device name: "Packt Btn"
Supported events:
Event type 0 (EV_SYN)
Event type 1 (EV_KEY)
Event code 256 (BTN_0)

Input Devices Drivers

[439]

Since the second module is based on IRQ, one can easily check if the IRQ request succeeded,
and how many time it has been fired:

$ cat /proc/interrupts | grep packt
160: 0 0 0 0 gpio-mxc 0 packt-input-button

Finally, one can successively push/release the button, and check whether the GPIO's state
changed or not:

$ cat /sys/kernel/debug/gpio | grep button
gpio-193 (button-gpio) in hi
$ cat /sys/kernel/debug/gpio | grep button
gpio-193 (button-gpio) in lo

Summary
This chapter described the whole input framework, and highlighted the difference between
polled and interrupt driven input devices. By the end of this chapter, you have the
necessary knowledge to write a driver for any input driver, whatever its type, and whatever
input event it supports. The user space interface was discussed too, with a sample
provided. The next chapter discusses another important framework, the RTC, which is the
key element of time management in PC as well as embedded devices.

18
RTC Drivers

Real Time Clock (RTC) are devices used to tracks absolute time in nonvolatile memory,
which may be internal to the processor, or externally connected through the I2C or SPI bus.

One may use an RTC to do the following:

Read and set the absolute clock, and generate interrupts during clock updates
Generate periodic interrupts
Set alarms

RTCs and the system clock have different purposes. The former is a hardware clock that
maintains absolute time and date in a nonvolatile manner, whereas the last is a software
clock maintained by the kernel and used to implement the gettimeofday(2) and time(2)
system calls, as well as setting timestamps on files, and so on. The system clock reports
seconds and microseconds from a start point, defined to be the POSIX epoch: 1970-01-01
00:00:00 +0000 (UTC).

In this chapter, we will cover the following topics:

Introducing RTC framework API
Describing such driver's architecture, along with a dummy driver example
Dealing with alarms
Managing RTC devices from user space, either through the sysfs interface, or
using the hwclock tool

RTC Drivers

[441]

RTC framework data structures
There are three main data structures used by the RTC framework on Linux systems. They
are strcut rtc_time, struct rtc_device, and struct rtc_class_ops structures.
The former is an opaque structure that represents a given date and time; the second
structure represents the physical RTC device; and the last one represents a set of operations
exposed by the driver and used by the RTC core to read/update a device's date/time/alarm.

The only header needed to pull RTC functions from within your driver is :

#include <linux/rtc.h>

The same file contains all of the three structures enumerated in the preceding section:

struct rtc_time {

 int tm_sec; /* seconds after the minute */

 int tm_min; /* minutes after the hour - [0, 59] */

 int tm_hour; /* hours since midnight - [0, 23] */

 int tm_mday; /* day of the month - [1, 31] */

 int tm_mon; /* months since January - [0, 11] */

 int tm_year; /* years since 1900 */

 int tm_wday; /* days since Sunday - [0, 6] */

 int tm_yday; /* days since January 1 - [0, 365] */

 int tm_isdst; /* Daylight saving time flag */

};

This structure is similar to the struct tm in <time.h>, used to pass time. The next
structure is struct rtc_device, which represent the chip in the kernel:

struct rtc_device {

 struct device dev;

 struct module *owner;

 int id;

 char name[RTC_DEVICE_NAME_SIZE];

 const struct rtc_class_ops *ops;

 struct mutex ops_lock;

 struct cdev char_dev;

 unsigned long flags;

 unsigned long irq_data;

 spinlock_t irq_lock;

 wait_queue_head_t irq_queue;

 struct rtc_task *irq_task;

RTC Drivers

[442]

 spinlock_t irq_task_lock;

 int irq_freq;

 int max_user_freq;

 struct work_struct irqwork;

};

The following are the meanings of the elements of the structure:

dev: This is the device structure.
owner: This is the module that owns this RTC device. Using THIS_MODULE will
be enough.
id: This is the global index given to the RTC device by the kernel /dev/rtc<id>.
name: This is the name given to the RTC device.
ops: This is a set of operations (like read/set time/alarm) exposed by this RTC
device to be managed by the core or from user space.
ops_lock: This is a mutex used internally by the kernel to protect ops functions
call.
cdev: This is the char device associated to this RTC, /dev/rtc<id>.

The next important structure is struct rtc_class_ops, which is a set of functions used
as callback to perform standard and limited on the RTC device. It is the communication
interface between top-layer and bottom-layer RTC drivers:

struct rtc_class_ops {

 int (*open)(struct device *);

 void (*release)(struct device *);

 int (*ioctl)(struct device *, unsigned int, unsigned long);

 int (*read_time)(struct device *, struct rtc_time *);

 int (*set_time)(struct device *, struct rtc_time *);

 int (*read_alarm)(struct device *, struct rtc_wkalrm *);

 int (*set_alarm)(struct device *, struct rtc_wkalrm *);

 int (*read_callback)(struct device *, int data);

 int (*alarm_irq_enable)(struct device *, unsigned int enabled);

};

All of the hooks in the preceding code are given a struct device structure as parameter,
which is the same as the one embedded in the struct rtc_device structure. This means
that from within these hooks, one can access the RTC device itself at any given time, using
the to_rtc_device() macro, which is built on top of the container_of() macro.

#define to_rtc_device(d) container_of(d, struct rtc_device, dev)

RTC Drivers

[443]

The open(), release(), and read_callback() hooks are internally called by the kernel
when the open(), close(), or read() functions are called on the device from user space.

read_time() is a driver function that reads the time from the device and fills the struct
rtc_time output argument. This function should return 0 on success, or else the negative
error code.

set_time() is a driver function that updates the device's time according to the struct
rtc_time structure given as the input parameter. Return parameter's remarks are the same
as the read_time function.

If your device supports an alarm feature, read_alarm() and set_alarm() should be
provided by the driver to read/set the alarm on the device. The struct rtc_wkalrm will
be described later in the chapter. alarm_irq_enable() should be provided too, to enable
the alarm.

RTC API
An RTC device is represented in the kernel as an instance of the struct rtc_device
structure. Unlike other kernel framework devices registrations(where the device is given as
parameter to the registering function), the RTC device is built by the core, and registered
first before the rtc_device structure gets returned to the driver. The device is built and
registered with the kernel using the rtc_device_register() function:

struct rtc_device *rtc_device_register(const char *name,

 struct device *dev,

 const struct rtc_class_ops *ops,

 struct module *owner)

One can see the meaning of each parameter of the functions, as follows:

name: This is your RTC device name. It could be the chip's name, for example:
ds1343.
dev: This is the parent device, used for device model purposes. For chips sitting
on I2C or SPI buses, for example, dev could be set with spi_device.dev, or
i2c_client.dev.
ops: This is your RTC ops, filled according to the features the RTC has, or those
your driver can support.
owner: This is the module to which this RTC device belongs. In most
cases, THIS_MODULE is enough.

RTC Drivers

[444]

The registration should be performed in the probe function, and obviously, one can use the
resource-managed version of this function:

struct rtc_device *devm_rtc_device_register(struct device *dev,

 const char *name,

 const struct rtc_class_ops *ops,

 struct module *owner)

Both functions return a pointer on a struct rtc_device structure built by the kernel on
success, or a pointer error on which you should use IS_ERR and PTR_ERR macros.

Associated reverse operations are rtc_device_unregister() and devm_
rtc_device_unregister():

void rtc_device_unregister(struct rtc_device *rtc)

void devm_rtc_device_unregister(struct device *dev,

 struct rtc_device *rtc)

Reading and setting time
The driver is responsible for providing functions to read and set the device's time. These are
the least an RTC driver can provide. When it comes to reading, the read callback function is
given a pointer to an allocated/zeroed struct rtc_time structure, which the driver has to
fill. Therefore, RTCs almost always store/restitute time in Binary Coded Decimal (BCD),
where each quartet (series of 4 bits) represents a number between 0 and 9 (rather than
between 0 and 15). The kernel provides two macros, bcd2bin() and bin2bcd(), to convert
respectively from BCD-encoding to decimal, or from decimal to BCD. The next things you
should pay attention to are some rtc_time fields, which have some boundaries
requirements, and where some translation must be done. Data is read in BCD from the
device, and should be converted using bcd2bin().

Since the struct rtc_time structure is complex, the kernel provides
the rtc_valid_tm() helper, in order to validate a given rtc_time structure, and which
returns 0 on success, meaning the structure represents a valid date/time:

int rtc_valid_tm(struct rtc_time *tm);

RTC Drivers

[445]

The following sample describes an RTC-read operation callback:

static int foo_rtc_read_time(struct device *dev, struct rtc_time *tm)

{

 struct foo_regs regs;

 int error;

 error = foo_device_read(dev, ®s, 0, sizeof(regs));

 if (error)

 return error;

 tm->tm_sec = bcd2bin(regs.seconds);

 tm->tm_min = bcd2bin(regs.minutes);

 tm->tm_hour = bcd2bin(regs.cent_hours);

 tm->tm_mday = bcd2bin(regs.date);

 /*

 * This device returns weekdays from 1 to 7

 * But rtc_time.wday expect days from 0 to 6.

 * So we need to substract 1 to the value returned by the chip

 */

 tm->tm_wday = bcd2bin(regs.day) - 1;

 /*

 * This device returns months from 1 to 12

 * But rtc_time.tm_month expect a months 0 to 11.

 * So we need to substract 1 to the value returned by the chip

 */

 tm->tm_mon = bcd2bin(regs.month) - 1;

 /*

 * This device's Epoch is 2000.

 * But rtc_time.tm_year expect years from Epoch 1900.

 * So we need to add 100 to the value returned by the chip

 */

 tm->tm_year = bcd2bin(regs.years) + 100;

 return rtc_valid_tm(tm);

}

The following header is necessary prior to using BCD-conversion functions:

#include <linux/bcd.h>

RTC Drivers

[446]

When it comes to the set_time function, a pointer to a struct rtc_time is given as an
input parameter. This parameter is already filled with values to be stored in the RTC chip.
Unfortunately, these are decimal-encoded, and should be converted into BCD prior to being
sent to the chip. bin2bcd does the conversion. The same attention should be paid to some
fields of the struct rtc_time structure. The following is a pseudo-code describing a
generic set_time function:

static int foo_rtc_set_time(struct device *dev, struct rtc_time *tm)

{

 regs.seconds = bin2bcd(tm->tm_sec);

 regs.minutes = bin2bcd(tm->tm_min);

 regs.cent_hours = bin2bcd(tm->tm_hour);

 /*

 * This device expects week days from 1 to 7

 * But rtc_time.wday contains week days from 0 to 6.

 * So we need to add 1 to the value given by rtc_time.wday

 */

 regs.day = bin2bcd(tm->tm_wday + 1);

 regs.date = bin2bcd(tm->tm_mday);

 /*

 * This device expects months from 1 to 12

 * But rtc_time.tm_mon contains months from 0 to 11.

 * So we need to add 1 to the value given by rtc_time.tm_mon

 */

 regs.month = bin2bcd(tm->tm_mon + 1);

 /*

 * This device expects year since Epoch 2000

 * But rtc_time.tm_year contains year since Epoch 1900.

 * We can just extract the year of the century with the

 * rest of the division by 100.

 */

 regs.cent_hours |= BQ32K_CENT;

 regs.years = bin2bcd(tm->tm_year % 100);

 return write_into_device(dev, ®s, 0, sizeof(regs));

}

RTC's epoch differs from the POSIX epoch, which is only used for the
system clock. If the year according to the RTC's epoch and the year
register is less than 1970, it is assumed to be 100 years later, that is,
between 2000 and 2069.

RTC Drivers

[447]

Driver example

One can summarize the preceding concepts in a simple and fake driver, which simply
registers an RTC device on the system:

#include <linux/platform_device.h>

#include <linux/module.h>

#include <linux/types.h>

#include <linux/time.h>

#include <linux/err.h>

#include <linux/rtc.h>

#include <linux/of.h>

static int fake_rtc_read_time(struct device *dev, struct rtc_time *tm)

{

 /*

 * One can update "tm" with fake values and then call

 */

 return rtc_valid_tm(tm);

}

static int fake_rtc_set_time(struct device *dev, struct rtc_time *tm)

{

 return 0;

}

static const struct rtc_class_ops fake_rtc_ops = {

 .read_time = fake_rtc_read_time,

 .set_time = fake_rtc_set_time

};

static const struct of_device_id rtc_dt_ids[] = {

 { .compatible = "packt,rtc-fake", },

 { /* sentinel */ }

};

static int fake_rtc_probe(struct platform_device *pdev)

{

 struct rtc_device *rtc;

 rtc = rtc_device_register(pdev->name, &pdev->dev,

 &fake_rtc_ops, THIS_MODULE);

 if (IS_ERR(rtc))

 return PTR_ERR(rtc);

 platform_set_drvdata(pdev, rtc);

 pr_info("Fake RTC module loaded\n");

RTC Drivers

[448]

 return 0;

}

static int fake_rtc_remove(struct platform_device *pdev)

{

 rtc_device_unregister(platform_get_drvdata(pdev));

 return 0;

}

static struct platform_driver fake_rtc_drv = {

 .probe = fake_rtc_probe,

 .remove = fake_rtc_remove,

 .driver = {

 .name = KBUILD_MODNAME,

 .owner = THIS_MODULE,

 .of_match_table = of_match_ptr(rtc_dt_ids),

 },

};

module_platform_driver(fake_rtc_drv);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Fake RTC driver description");

Playing with alarms
RTC alarms are programmable events to be triggered by the device at a given time. An RTC
alarm is represented as an instance of the struct rtc_wkalarm structure:

struct rtc_wkalrm {

unsigned char enabled; /* 0 = alarm disabled, 1 = enabled */

unsigned char pending; /* 0 = alarm not pending, 1 = pending */

struct rtc_time time; /* time the alarm is set to */

};

The driver should provide set_alarm() and read_alarm() operations, to set and read
time at which the alarm should occur, as well as alarm_irq_enable(), which is a function
used to enable/disable the alarm. When the set_alarm() function is invoked, it is given as
an input parameter, a pointer to a struct rtc_wkalrm, whose .time field contains the
time the alarm must be set to. It is up to the driver to extract each value in a correct manner
(using bin2dcb() if necessary), and write it into the device in appropriate registers.
rtc_wkalrm.enabled tell if the alarm should be enabled right after it has been set. If true,
the driver must enable the alarm in the chip. The same is true for read_alarm() that is
given a pointer to struct rtc_wkalrm, but as an output parameter this time. The driver
has to fill the structure with data read from the device.

RTC Drivers

[449]

{read | set}_alarm() and {read | set}_time() functions behave
the same way, except that each pair of functions reads/stores data
from/into different sets of registers in the device.

Prior to report alarm event to the system, it is mandatory to connect the RTC chip to an IRQ
line of the SoC. It relies on INT line of the RTC driven low when the alarm occur.
Depending on the manufacturer, the line remains low until a status register get read, or a
special bit get cleared:

At this point we can use a generic IRQ API, such as request_threaded_irq(), in order to
register the alarm IRQ's handler. From within the IRQ handler, it is important to inform the
kernel about the RTC IRQ event, using the rtc_update_irq() function:

void rtc_update_irq(struct rtc_device *rtc,

 unsigned long num, unsigned long events)

rtc: This is the rtc device that raised the IRQ
num: This shows how many IRQs are being reported (usually one)
events: This is a mask of RTC_IRQF with one or more of RTC_PF, RTC_AF,
RTC_UF

/* RTC interrupt flags */

#define RTC_IRQF 0x80 /* Any of the following is active */

#define RTC_PF 0x40 /* Periodic interrupt */

#define RTC_AF 0x20 /* Alarm interrupt */

#define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */

RTC Drivers

[450]

That function can be called from any context, atomic or not. The IRQ handler could look as
follows:

static irqreturn_t foo_rtc_alarm_irq(int irq, void *data)

{

 struct foo_rtc_struct * foo_device = data;

 dev_info(foo_device ->dev, "%s:irq(%d)\n", __func__, irq);

 rtc_update_irq(foo_device ->rtc_dev, 1, RTC_IRQF | RTC_AF);

 return IRQ_HANDLED;

}

Keep in mind that RTC devices that have the alarm feature can be used as a wake-up
source. That said, the system can be woken up from suspend mode whenever the alarm
triggers. This feature relies on the interrupt raised by the RTC device. One declares a device
as being wake-up source using the device_init_wakeup() function. The IRQ that
actually wakes the system up must be registered with the power management core too,
using the dev_pm_set_wake_irq() function:

int device_init_wakeup(struct device *dev, bool enable)

int dev_pm_set_wake_irq(struct device *dev, int irq)

We will not discuss power management in detail in this book. The idea is just to give you an
overview of how RTC devices may improve your system. The driver drivers/rtc/rtc-
ds1343.c may help to implement such functions. Let us put everything together by writing
a fake probe function for an SPI foo RTC device:

static const struct rtc_class_ops foo_rtc_ops = {

 .read_time = foo_rtc_read_time,

 .set_time = foo_rtc_set_time,

 .read_alarm = foo_rtc_read_alarm,

 .set_alarm = foo_rtc_set_alarm,

 .alarm_irq_enable = foo_rtc_alarm_irq_enable,

 .ioctl = foo_rtc_ioctl,

};

static int foo_spi_probe(struct spi_device *spi)

{

 int ret;

 /* initialise and configure the RTC chip */

 [...]

foo_rtc->rtc_dev =

devm_rtc_device_register(&spi->dev, "foo-rtc",

&foo_rtc_ops, THIS_MODULE);

 if (IS_ERR(foo_rtc->rtc_dev)) {

 dev_err(&spi->dev, "unable to register foo rtc\n");

RTC Drivers

[451]

 return PTR_ERR(priv->rtc);

 }

 foo_rtc->irq = spi->irq;

 if (foo_rtc->irq >= 0) {

 ret = devm_request_threaded_irq(&spi->dev, spi->irq,

 NULL, foo_rtc_alarm_irq,

 IRQF_ONESHOT, "foo-rtc", priv);

 if (ret) {

 foo_rtc->irq = -1;

 dev_err(&spi->dev,

 "unable to request irq for rtc foo-rtc\n");

 } else {

 device_init_wakeup(&spi->dev, true);

 dev_pm_set_wake_irq(&spi->dev, spi->irq);

 }

 }

 return 0;

}

RTCs and user space
On Linux systems, there are two kernel options one needs to care about in order to properly
manage RTCs from user space. These are CONFIG_RTC_HCTOSYS and
CONFIG_RTC_HCTOSYS_DEVICE.

CONFIG_RTC_HCTOSYS includes the code file drivers/rtc/hctosys.c in kernel build
process, which sets system time from the RTC on startup and resume. Once this option is
enabled, the system time will be set using the value read from the specified RTC device.
RTC devices should be specified in CONFIG_RTC_HCTOSYS_DEVICE:

CONFIG_RTC_HCTOSYS=y

CONFIG_RTC_HCTOSYS_DEVICE="rtc0"

In the preceding example, we tell the kernel to set the system time from the RTC, and we
specify that the RTC to use is rtc0.

RTC Drivers

[452]

The sysfs interface
The kernel code responsible for instantiating RTC attributes in sysfs is defined in
drivers/rtc/rtc-sysfs.c, in the kernel source tree. Once registered, an RTC device will
create a rtc<id> directory under /sys/class/rtc. That directory contains a set of read-
only attributes, among which the most important are:

date: This file prints the current date of the RTC interface:

$ cat /sys/class/rtc/rtc0/date
2017-08-28

time: This prints the current time of this RTC:

 $ cat /sys/class/rtc/rtc0/time
 14:54:20

hctosys: This attribute indicates whether the RTC device is the one specified in
CONFIG_RTC_HCTOSYS_DEVICE, meaning that this RTC is used to set system
time on startup and resume. Read 1 as true, and 0 as false:

 $ cat /sys/class/rtc/rtc0/hctosys
 1

dev: This attribute shows the device's major and minor. Read as major:minor:

 $ cat /sys/class/rtc/rtc0/dev
 251:0

since_epoch: This attribute will print the number of seconds elapsed since the
UNIX epoch (since January 1rst 1970):

 $ cat /sys/class/rtc/rtc0/since_epoch
 1503931738

RTC Drivers

[453]

The hwclock utility
Hardware clock (hwclock) is a tool used to access RTC devices. The man hwclock
command will probably be much more meaningful than everything discussed in this
section. That said, let us write some commands, to set hwclock RTC from the system clock:

 $ sudo ntpd -q # make sure system clock is set from network time
 $ sudo hwclock --systohc # set rtc from the system clock
 $ sudo hwclock --show # check rtc was set
 Sat May 17 17:36:50 2017 -0.671045 seconds

The preceding example assumes the host has a network connection on which it can access
an NTP server. It is also possible to set the system time manually:

 $ sudo date -s '2017-08-28 17:14:00' '+%s' #set system clock manually
 $ sudo hwclock --systohc #synchronize rtc chip on system time

If not given as argument, hwclock assumes the RTC device file is /dev/rtc, which is
actually a symbolic link to the real RTC device:

 $ ls -l /dev/rtc
 lrwxrwxrwx 1 root root 4 août 27 17:50 /dev/rtc -> rtc0

Summary
This chapter introduced you to the RTC framework and its API. Its reduced set of functions
and data structures make it the most lightweight framework, and easy to master. Using
skills described in this chapter, you will be able to develop a driver for most of the existing
RTC chips, and even go further and handle such devices from the user space, easily setting
up date and time, as well as alarms. The next chapter, PWM drivers, has nothing common
with this one, but is a must-know for embedded engineers.

19
PWM Drivers

Pulse Wide Modulation (PWM) operates like a switch that constantly cycles on and off. It
is a hardware feature used to control servomotors, for voltage regulation, and so on. The
most well-known applications of PWM are:

Motor speed control
Light dimming
Voltage regulation

Now, let us introduce PWM with a simple following figure:

PWM Drivers

[455]

The preceding figure describes a complete PWM cycle, introducing some terms we need to
clarify prior to getting deeper into the kernel PWM framework:

Ton: This is the duration during which the signal is high.
Toff: This is the duration during which the signal is low.
Period: This is the duration of a complete PWM cycle. It represents the sum of
Ton and Toff of the PWM signal.
Duty cycle: It is represented as a percentage of the time signal that remains on
during the period of the PWM signal.

Different formulas are detailed as follows:

PWM period:

Duty cycle:

You can find details about PWM at https:/​/​en.​wikipedia.​org/​wiki/
Pulse-​width_​modulation.

The Linux PWM framework has two interfaces:

Controller interface: The one that exposes the PWM line. It is the PWM chip, that1.
is, the producer.
Consumer interface: The device consuming PWM lines exposed by the2.
controller. Drivers of such devices use helper functions exported by the controller
by means of a generic PWM framework.

Either the consumer or producer interface depends on the following header file:

#include <linux/pwm.h>

In this chapter, we will deal with:

PWM driver architecture and data structures, for both controller and consumer,
along with a dummy driver
Instantiating PWM devices and controllers in the device tree
Requesting and consuming PWM devices
Using PWM from user space through sysfs interface

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

PWM Drivers

[456]

PWM controller driver
As you need struct gpio_chip when writing GPIO-controller drivers and struct
irq_chip when writing IRQ-controller drivers, a PWM controller is represented in the
kernel as an instance of struct pwm_chip structure.

PWM controller and devices

struct pwm_chip {

 struct device *dev;

 const struct pwm_ops *ops;

 int base;

 unsigned int npwm;

 struct pwm_device *pwms;

 struct pwm_device * (*of_xlate)(struct pwm_chip *pc,

 const struct of_phandle_args *args);

 unsigned int of_pwm_n_cells;

 bool can_sleep;

};

PWM Drivers

[457]

The following is the meaning of each elements in the structure:

dev: This represents the device associated with this chip.
Ops: This is a data structure providing callback functions this chip exposes to
consumer drivers.
Base: This is the number of the first PWM controlled by this chip. If chip->base
< 0 then, the kernel will dynamically assign a base.
can_sleep: This should be set to true by the chip driver if .config(),
.enable(), or .disable() operations of the ops field may sleep.
npwm: This is the number of PWM channels (devices) this chip provide.
pwms: This is an array of PWM devices of this chip, allocated by the framework,
to consumer drivers.
of_xlate: This is an optional callback to request a PWM device given a DT
PWM specifier. If not defined, it will be set to of_pwm_simple_xlate by the
PWM core, which will force of_pwm_n_cells to 2 as well.
of_pwm_n_cells: This is the number of cells expected in the DT for a PWM
specifier.

PWM controller/chip adding and removal rely on two basic functions, pwmchip_add() and
pwmchip_remove(). Each function should be given a filled in struct pwm_chip structure
as an argument. Their respective prototypes are as follows:

int pwmchip_add(struct pwm_chip *chip)

int pwmchip_remove(struct pwm_chip *chip)

Unlike other framework removal functions that do not have return values,
pwmchip_remove() has a return value. It returns 0 on success, or -EBUSY if the chip has a
PWM line still in use (still requested).

Each PWM driver must implement some hooks through the struct pwm_ops field, which
is used by the PWM core or the consumer interface in order to configure and make full use
of its PWM channels. Some of them are optional.

struct pwm_ops {

 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);

 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);

 int (*config)(struct pwm_chip *chip, struct pwm_device *pwm,

 int duty_ns, int period_ns);

 int (*set_polarity)(struct pwm_chip *chip, struct pwm_device *pwm,

 enum pwm_polarity polarity);

 int (*enable)(struct pwm_chip *chip,struct pwm_device *pwm);

 void (*disable)(struct pwm_chip *chip, struct pwm_device *pwm);

PWM Drivers

[458]

 void (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,

 struct pwm_state *state); /* since kernel v4.7 */

 struct module *owner;

};

Let us see what each element in the structure means:

request: This is an optional hook that, if provided, is executed during a PWM
channel request.
free: This is the same as request, ran during PWM freeing.
config: This is the PMW configuration hook. It configures duty cycles and
period length for this PWM.
set_polarity: This hook configures the polarity of this PWM.
Enable: This enables the PWM line, starting output toggling.
Disable: This disables the PWM line, stopping output toggling.
Apply: This atomically applies a new PWM config. The state argument should be
adjusted with the real hardware config.
get_state: This returns the current PWM state. This function is only called once
per PWM device when the PWM chip is registered.
Owner: This is the module that owns this chip, usually THIS_MODULE.

In the probe function of the PWM controller driver, it is good practice to retrieve DT
resources, initialize hardware, fill a struct pwm_chip and its struct pwm_ops, and then,
add the PWM chip with the pwmchip_add function.

Driver example
Now let us summarize things by writing a dummy driver for a PWM controller, which has
three channels:

#include <linux/module.h>

#include <linux/of.h>

#include <linux/platform_device.h>

#include <linux/pwm.h>

struct fake_chip {

 struct pwm_chip chip;

 int foo;

 int bar;

 /* put the client structure here (SPI/I2C) */

};

PWM Drivers

[459]

static inline struct fake_chip *to_fake_chip(struct pwm_chip *chip)

{

 return container_of(chip, struct fake_chip, chip);

}

static int fake_pwm_request(struct pwm_chip *chip,

 struct pwm_device *pwm)

{

 /*

 * One may need to do some initialization when a PWM channel

 * of the controller is requested. This should be done here.

 *

 * One may do something like

 * prepare_pwm_device(struct pwm_chip *chip, pwm->hwpwm);

 */

 return 0;

}

static int fake_pwm_config(struct pwm_chip *chip,

 struct pwm_device *pwm,

 int duty_ns, int period_ns)

{

 /*

 * In this function, one ne can do something like:

 * struct fake_chip *priv = to_fake_chip(chip);

 *

 * return send_command_to_set_config(priv,

 * duty_ns, period_ns);

 */

 return 0;

}

static int fake_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)

{

 /*

 * In this function, one ne can do something like:

 * struct fake_chip *priv = to_fake_chip(chip);

 *

 * return foo_chip_set_pwm_enable(priv, pwm->hwpwm, true);

 */

 pr_info("Somebody enabled PWM device number %d of this chip",

 pwm->hwpwm);

 return 0;

}

PWM Drivers

[460]

static void fake_pwm_disable(struct pwm_chip *chip,

 struct pwm_device *pwm)

{

 /*

 * In this function, one ne can do something like:

 * struct fake_chip *priv = to_fake_chip(chip);

 *

 * return foo_chip_set_pwm_enable(priv, pwm->hwpwm, false);

 */

 pr_info("Somebody disabled PWM device number %d of this chip",

 pwm->hwpwm);

}

static const struct pwm_ops fake_pwm_ops = {

 .request = fake_pwm_request,

 .config = fake_pwm_config,

 .enable = fake_pwm_enable,

 .disable = fake_pwm_disable,

 .owner = THIS_MODULE,

};

static int fake_pwm_probe(struct platform_device *pdev)

{

 struct fake_chip *priv;

 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);

 if (!priv)

 return -ENOMEM;

 priv->chip.ops = &fake_pwm_ops;

 priv->chip.dev = &pdev->dev;

 priv->chip.base = -1; /* Dynamic base */

 priv->chip.npwm = 3; /* 3 channel controller */

 platform_set_drvdata(pdev, priv);

 return pwmchip_add(&priv->chip);

}

static int fake_pwm_remove(struct platform_device *pdev)

{

 struct fake_chip *priv = platform_get_drvdata(pdev);

 return pwmchip_remove(&priv->chip);

}

static const struct of_device_id fake_pwm_dt_ids[] = {

 { .compatible = "packt,fake-pwm", },

 { }

};

PWM Drivers

[461]

MODULE_DEVICE_TABLE(of, fake_pwm_dt_ids);

static struct platform_driver fake_pwm_driver = {

 .driver = {

 .name = KBUILD_MODNAME,

.owner = THIS_MODULE,

 .of_match_table = of_match_ptr(fake_pwm_dt_ids),

 },

 .probe = fake_pwm_probe,

 .remove = fake_pwm_remove,

};

module_platform_driver(fake_pwm_driver);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Fake pwm driver");

MODULE_LICENSE("GPL");

PWM controller binding
While binding the PWM controller from within the DT, the most important property is
#pwm-cells. It represents the number of cells used to represent a PWM device of this
controller. If you remember, in the struct pwm_chip structure, the of_xlate hook is
used to translate a given PWM specifier. If the hook has not been set, pwm-cells here must
be set to 2, else, it should be set with the same value as of_pwm_n_cells. The following is
an example of a PWM controller node in the DT, for an i.MX6 SoC.

pwm3: pwm@02088000 {

 #pwm-cells = <2>;

 compatible = "fsl,imx6q-pwm", "fsl,imx27-pwm";

 reg = <0x02088000 0x4000>;

 interrupts = <0 85 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&clks IMX6QDL_CLK_IPG>,

 <&clks IMX6QDL_CLK_PWM3>;

 clock-names = "ipg", "per";

 status = "disabled";

};

PWM Drivers

[462]

On the other hand, the node that corresponds to our fake-pwm driver looks like:

fake_pwm: pwm@0 {

 #pwm-cells = <2>;

 compatible = "packt,fake-pwm";

 /*

 * Our driver does not use resource

 * neither mem, IRQ, nor Clock)

 */

};

PWM consumer interface
A consumer is the device that actually uses PWM channels. A PWM channel is represented
in the kernel as an instance of struct pwm_device structure:

struct pwm_device {

 const char *label;

 unsigned long flags;

 unsigned int hwpwm;

 unsigned int pwm;

 struct pwm_chip *chip;

 void *chip_data;

 unsigned int period; /* in nanoseconds */

 unsigned int duty_cycle; /* in nanoseconds */

 enum pwm_polarity polarity;

};

Label: This is the name of this PWM device
Flags: This represents the flags associated with the PWM device
hwpw: This is a relative index of the PWM device, local to the chip
pwm: This is a system global index of the PWM device
chip: This is a PWM chip, the controller providing this PWM device
chip_data: This is chip-private data associated with this PWM device

PWM Drivers

[463]

Since kernel v4.7, the structure changed into:

struct pwm_device {

 const char *label;

 unsigned long flags;

 unsigned int hwpwm;

 unsigned int pwm;

 struct pwm_chip *chip;

 void *chip_data;

 struct pwm_args args;

 struct pwm_state state;

};

args: This represents the board-dependent PWM arguments attached to this
PWM device, which are usually retrieved from the PWM lookup table or device
tree. PWM arguments represent the initial configuration that users want to use on
this PWM device rather than the current PWM hardware state.
state: This represents the current PWM channel state.

struct pwm_args {

 unsigned int period; /* Device's nitial period */

 enum pwm_polarity polarity;

};

struct pwm_state {

 unsigned int period; /* PWM period (in nanoseconds) */

 unsigned int duty_cycle; /* PWM duty cycle (in nanoseconds) */

 enum pwm_polarity polarity; /* PWM polarity */

 bool enabled; /* PWM enabled status */

}

Over Linux evolutions, the PWM framework faced several changes. These changes concern
the way one requests PWM devices from within the consumer side. We can split the
consumer interface into two parts, or more precisely into two versions.

The legacy version, where you use pwm_request() and pwm_free() in order to request a
PWM device and free it after usage.

The new and recommended API, using pwm_get()and pwm_put() functions. The former
is given the consumer device along with the channel name as arguments to request the
PWM device, and the second is given the PWM device to be freed as a parameter. Managed
variants of these functions, devm_pwm_get() and devm_pwm_put(), also exist.

struct pwm_device *pwm_get(struct device *dev, const char *con_id)

void pwm_put(struct pwm_device *pwm)

PWM Drivers

[464]

pwm_request()/pwm_get() and pwm_free()/pwm_put() cannot be
called from an atomic context, since the PWM core make use of mutexes,
which may sleep.

After being requested, a PWM has to be configured using:

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns);

To start/stop toggling the PWM output, use pwm_enable()/pwm_disable(). Both
functions take a pointer to a struct pwm_device as a parameter, and are all wrappers
around hooks exposed by the controller through the pwm_chip.pwm_ops field.

int pwm_enable(struct pwm_device *pwm)

void pwm_disable(struct pwm_device *pwm)

pwm_enable() returns 0 on success, or a negative error code on failure. A good example of
a PWM consumer driver is drivers/leds/leds-pwm.c in the kernel source tree. The
following is an example of consumer code, driving a PWM led:

static void pwm_led_drive(struct pwm_device *pwm,

 struct private_data *priv)

{

 /* Configure the PWM, applying a period and duty cycle */

 pwm_config(pwm, priv->duty, priv->pwm_period);

 /* Start toggling */

 pwm_enable(pchip->pwmd);

 [...] /* Do some work */

 /* And then stop toggling*/

 pwm_disable(pchip->pwmd);

}

PWM clients binding
PWM devices can be assigned to the consumer from:

Device tree
ACPI
Static lookup tables, in board init file.

PWM Drivers

[465]

This book will only deal with DT binding, as it is the recommended method. When binding
a PWM consumer (client) to its driver, you need to provide the phandle of the controller to
which it is linked.

It is recommended you give the name pwms to PWM properties; since PWM devices are
named resources, you can provide an optional property pwm-names, containing a list of
strings to name each of the PWM devices listed in the pwms property. In case no pwm-names
property is given, the name of the user node will be used as fallback.

Drivers for devices that use more than a single PWM device can use the pwm-names
property to map the name of the PWM device requested by the pwm_get() call to an index
into the list given by the pwms property.

The following example describes a PWM-based backlight device, which is an excerpt from
the kernel documentation on PWM device binding (see
Documentation/devicetree/bindings/pwm/pwm.txt):

pwm: pwm {

 #pwm-cells = <2>;

};

[...]

bl: backlight {

pwms = <&pwm 0 5000000>;

 pwm-names = "backlight";

};

The PWM-specifier typically encodes the chip-relative PWM number and the PWM period
in nanoseconds. With the line as follows:

pwms = <&pwm 0 5000000>;

0 corresponds to the PWM index relative to the controller, and 5000000 represents the
period in nanoseconds. Note that in the preceding example, specifying the pwm-names is
redundant because the name backlight would be used as a fallback anyway. Therefore,
the driver would have to call:

static int my_consummer_probe(struct platform_device *pdev)

{

 struct pwm_device *pwm;

 pwm = pwm_get(&pdev->dev, "backlight");

 if (IS_ERR(pwm)) {

 pr_info("unable to request PWM, trying legacy API\n");

 /*

PWM Drivers

[466]

 * Some drivers use the legacy API as fallback, in order

 * to request a PWM ID, global to the system

 * pwm = pwm_request(global_pwm_id, "pwm beeper");

 */

 }

 [...]

 return 0;

}

The PWM-specifier typically encodes the chip-relative PWM number and
the PWM period in nanoseconds.

Using PWMs with the sysfs interface
The PWM core sysfs root path is /sys/class/pwm/. It is the user space way to manage
PWM device. Each PWM controller/chip added to the system creates a pwmchipN directory
entry under the sysfs root path, where N is the base of the PWM chip. The directory
contains the following files:

npwm: This is a reads only file printing the number of PWM channels that this
chip supports
Export: This is a write-only file allowing to export a PWM channel for use with
sysfs (this functionality is equivalent to GPIO sysfs interface)
Unexport: Unexports a PWM channel from sysfs (write-only)

The PWM channels are numbered using an index from 0 to pwm<n-1>. These numbers are
local to the chip. Each PWM channel exportation creates a pwmX directory in the pwmchipN,
which is the same directory as the one containing the export file used. X is the number of
the channel that was exported. Each channel directory contains the following files:

Period: This is a readable/writable file to get/set the total period of the PWM
signal. Value is in nanoseconds.
duty_cycle: This is a readable/writable file to get/set the duty cycle of the PWM
signal. It represents the active time of the PWM signal. Value is in nanoseconds
and must always be less than the period.

PWM Drivers

[467]

Polarity: This is a readable/writable file to use only if the chip of this PWM
device supports polarity inversion. It is better to change the polarity only when
this PWM is not enabled. Accepted values are string normal or inversed.
Enable: This is a readable/writable file, to enable (start toggling)/disable (stop
toggling) the PWM signal. Accepted values are:

0: disabled
1: enabled

The following is an example of using PWM from user space through the sysfs interface:

Enable PWM:1.

 # echo 1 > /sys/class/pwm/pwmchip<pwmchipnr>/pwm<pwmnr>/enable

Set PWM period:2.

echo <value in nanoseconds> >
/sys/class/pwm/pwmchip<pwmchipnr>/pwm<pwmnr>/period

Set PWM duty cycle: The value of the duty cycle must be less than the value of3.
PWM period:

echo <value in nanoseconds> >
/sys/class/pwm/pwmchip<pwmchipnr>/pwm<pwmnr>/duty_cycle

Disable PWM:4.

 # echo 0 > /sys/class/pwm/pwmchip<pwmchipnr>/pwm<pwmnr>/enable

The complete PWM framework API and sysfs description is available in
the Documentation/pwm.txt file, in the kernel source tree.

PWM Drivers

[468]

Summary
By the end of this chapter, you are armed for any PWM controller, whether it is memory
mapped, or externally sitting on a bus. The API described in this chapter will be sufficient to
write as well as to enhance a controller driver as a consumer device driver. If you are not
comfortable with the PWM kernel side yet, you can fully use the user space sysfs interface.
That said, in the next chapter, we will discuss about regulators, which sometimes are driven
by PWM. So, please hold on, we are almost done.

20
Regulator Framework

A regulator is an electronic device that supplies power to other devices. Devices powered
by regulators are called consumers. One said they consume power provided by regulators.
Most regulators can enable and disable their output and some can also control their output
voltage or current. The driver should expose those capabilities to consumers by means of
specific functions and data structures, which we will discuss in this chapter.

The chip that physically provides regulators is called a Power Management Integrated
Circuit (PMIC):

Regulator Framework

[470]

The Linux regulator framework has been designed to interface and control voltage and
current regulators. It is divided into four separate interfaces as follows:

A regulator drivers interface for regulator PMIC drivers. The structure of this
interface can be found in include/linux/regulator/driver.h.
A consumer interface for device drivers.
A machine interface for board configuration.
A sysfs interface for user space.

In this chapter, we will cover the following topics:

Introducing the PMIC/producer driver interface, driver methods and data
structures
A case study with ISL6271A MIC driver, as well as a dummy regulator for testing
purpose
A regulator consumer interface along with its API
Regulator (producer/consumer) binding in DT

PMIC/producer driver interface
The producer is the device generating the regulated voltage or current. The name of such a
device is PMIC and it can be used for power sequencing, battery management, DC-to-DC
conversion, or simple power switches (on/off). It regulates the output power from the input
power, with the help of (and under) software control.

It deals with regulator drivers, and especially the producer PMIC side, which requires a few
headers:

#include <linux/platform_device.h>

#include <linux/regulator/driver.h>

#include <linux/regulator/of_regulator.h>

Driver data structures
We will start with a short walkthrough of data structures used by the regulator framework.
Only the producer interface is described in this section.

Regulator Framework

[471]

Description structure
The kernel describes every regulator provided by a PMIC by means of a struct
regulator_desc structure, which characterizes a regulator. By regulator, I mean any
independent regulated output. For example, the ISL6271A from Intersil is a PMIC with
three independent regulated outputs. There should then be three instances of
regulator_desc in its driver. This structure, which contains the fixed properties of a
regulator, looks like the following:

struct regulator_desc {

 const char *name;

 const char *of_match;

 int id;

 unsigned n_voltages;

 const struct regulator_ops *ops;

 int irq;

 enum regulator_type type;

 struct module *owner;

 unsigned int min_uV;

 unsigned int uV_step;

};

Let us omit some fields for simplicity reasons. Full structure definition is available in
include/linux/regulator/driver.h:

name holds the name of the regulator.
of_match holds the name used to identify the regulator in DT.
id is a numerical identifier for the regulator.
owner represents the module providing the regulator. Set this field to
THIS_MODULE.
type indicates if the regulator is a voltage regulator or a current regulator. It can
either be REGULATOR_VOLTAGE or REGULATOR_CURRENT. Any other value will
result in a regulator registering failure.
n_voltages indicates the number of selectors available for this regulator. It
represents the numerical value that the regulator can output. For fixed output
voltage, n_voltages should be set to 1.
min_uV indicates the minimum voltage value this regulator can provide. It is the
voltage given by the lowest selector.
uV_step represents the voltage increase with each selector.

Regulator Framework

[472]

ops represents the regulator operations table. It is a structure pointing to a set of
operation callbacks that the regulator can support. This field is discussed later.
irq is the interrupt number of the regulator.

Constraints structure
When a PMIC exposes a regulator to consumers, it has to impose some nominal limits for
this regulator with the help of the struct regulation_constraints structure. It is a
structure gathering security limit of the regulator and defines boundaries the consumers
cannot cross. It is a kind of a contract between the regulator driver and the consumer driver:

struct regulation_constraints {

 const char *name;

 /* voltage output range (inclusive) - for voltage control */

 int min_uV;

 int max_uV;

 int uV_offset;

 /* current output range (inclusive) - for current control */

 int min_uA;

 int max_uA;

 /* valid regulator operating modes for this machine */

 unsigned int valid_modes_mask;

 /* valid operations for regulator on this machine */

 unsigned int valid_ops_mask;

 struct regulator_state state_disk;

 struct regulator_state state_mem;

 struct regulator_state state_standby;

 suspend_state_t initial_state; /* suspend state to set at init */

 /* mode to set on startup */

 unsigned int initial_mode;

 /* constraint flags */

 unsigned always_on:1; /* regulator never off when system is on */

 unsigned boot_on:1; /* bootloader/firmware enabled regulator */

 unsigned apply_uV:1; /* apply uV constraint if min == max */

};

Regulator Framework

[473]

Let us describe each element in the structure:

min_uV, min_uA, max_uA, and max_uV are the smallest voltage/current values
that the consumers may set.
uV_offset is the offset applied to voltages from the consumer to compensate for
voltage drops.
valid_modes_mask and valid_ops_mask respectively are masks of
modes/operations which may be configured/performed by consumers.
always_on should be set if the regulator should never be disabled.
boot_on should be set if the regulator is enabled when the system is initially
started. If the regulator is not enabled by the hardware or bootloader then it will
be enabled when the constraints are applied.
name is a descriptive name for the constraints used for display purposes.
apply_uV applies the voltage constraint when initializing.
input_uV represents the input voltage for this regulator when it is supplied by
another regulator.
state_disk, state_mem, and state_standby define the state for the regulator
when the system is suspended in the disk mode, mem mode, or in standby.
initial_state indicates the suspended state is set by default.
initial_mode is the mode to set at startup.

init data structure
There are two ways to pass regulator_init_data to a driver; this can be done by
platform data in the board initialization file or by a node in the device tree using the
of_get_regulator_init_data function:

struct regulator_init_data {

 struct regulation_constraints constraints;

 /* optional regulator machine specific init */

 int (*regulator_init)(void *driver_data);

 void *driver_data; /* core does not touch this */

};

Regulator Framework

[474]

The following are the meanings of elements in the structure:

constraints represents the regulator constraints
regulator_init is an optional callback invoked at a given moment when the
core registers the regulator
driver_data represents the data passed to regulator_init

As one can see, the struct constraints structure is part of the init data. This is
explained by the fact that at the initialization of the regulator, its constraint is directly
applied to it, far before any consumer can use it.

Feeding init data into a board file

This method consists of filling an array of constraints, either from within the driver, or in
the board file, and using it as part of the platform data. The following is the sample based
on the device from the case study, the ISL6271A from Intersil:

static struct regulator_init_data isl_init_data[] = {

 [0] = {

 .constraints = {

 .name = "Core Buck",

 .min_uV = 850000,

 .max_uV = 1600000,

 .valid_modes_mask = REGULATOR_MODE_NORMAL

 | REGULATOR_MODE_STANDBY,

 .valid_ops_mask = REGULATOR_CHANGE_MODE

 | REGULATOR_CHANGE_STATUS,

 },

 },

 [1] = {

 .constraints = {

 .name = "LDO1",

 .min_uV = 1100000,

 .max_uV = 1100000,

 .always_on = true,

 .valid_modes_mask = REGULATOR_MODE_NORMAL

 | REGULATOR_MODE_STANDBY,

 .valid_ops_mask = REGULATOR_CHANGE_MODE

 | REGULATOR_CHANGE_STATUS,

 },

 },

 [2] = {

 .constraints = {

 .name = "LDO2",

 .min_uV = 1300000,

Regulator Framework

[475]

 .max_uV = 1300000,

 .always_on = true,

 .valid_modes_mask = REGULATOR_MODE_NORMAL

 | REGULATOR_MODE_STANDBY,

 .valid_ops_mask = REGULATOR_CHANGE_MODE

 | REGULATOR_CHANGE_STATUS,

 },

 },

};

This method is now depreciated, though it is presented here for your information. The new
and recommended approach is the DT, which is described in the next section.

Feeding init data into the DT

In order to extract init data passed from within the DT, there is a new data type that we
need to introduce, struct of_regulator_match, which looks like this:

struct of_regulator_match {

 const char *name;

 void *driver_data;

 struct regulator_init_data *init_data;

 struct device_node *of_node;

 const struct regulator_desc *desc;

};

Prior to making any use of this data structure, we need to figure out how to achieve the
regulator binding of a DT file.

Every PMIC node in the DT should have a sub-node named regulators, in which we have
to declare each of the regulators this PMIC provides as a dedicated sub-node. In other
words, every regulator of a PMIC is defined as a sub-node of the regulators node, which
in turn is a child of the PMIC node in the DT.

There are standardized properties you can define in a regulator node:

regulator-name: This is a string used as a descriptive name for regulator
outputs
regulator-min-microvolt: This is the smallest voltage that consumers may
set
regulator-max-microvolt: This is the largest voltage consumers may set
regulator-microvolt-offset: This is the offset applied to voltages to
compensate for voltage drops

Regulator Framework

[476]

regulator-min-microamp: This is the smallest current consumers may set
regulator-max-microamp: This is the largest current consumers may set
regulator-always-on: This is a Boolean value, indicated if the regulator
should never be disabled
regulator-boot-on: This is a bootloader/firmware enabled regulator
<name>-supply: This is a phandle to the parent supply/regulator node
regulator-ramp-delay: This is the ramp delay for the regulator (in uV/uS)

Those properties really look like fields in struct regulator_init_data. Back with the
ISL6271A driver, its DT entry could look like this:

isl6271a@3c {

 compatible = "isl6271a";

 reg = <0x3c>;

 interrupts = <0 86 0x4>;

 /* supposing our regulator is powered by another regulator */

 in-v1-supply = <&some_reg>;

 [...]

 regulators {

 reg1: core_buck {

 regulator-name = "Core Buck";

 regulator-min-microvolt = <850000>;

 regulator-max-microvolt = <1600000>;

 };

 reg2: ldo1 {

 regulator-name = "LDO1";

 regulator-min-microvolt = <1100000>;

 regulator-max-microvolt = <1100000>;

 regulator-always-on;

 };

 reg3: ldo2 {

 regulator-name = "LDO2";

 regulator-min-microvolt = <1300000>;

 regulator-max-microvolt = <1300000>;

 regulator-always-on;

 };

 };

};

Regulator Framework

[477]

Using the kernel helper function of_regulator_match(), given the regulators sub-
node as the parameter, the function will walk through each regulator device node and build
a struct init_data structure for each of them. There is an example in the probe()
function, discussed in the driver methods section.

Configuration structure
Regulator devices are configured by means of the struct regulator_config structure,
which holds variable elements of the regulator description. This structure is passed to the
framework when it comes to registering a regulator with the core:

struct regulator_config {

 struct device *dev;

 const struct regulator_init_data *init_data;

 void *driver_data;

 struct device_node *of_node;

};

dev represents the struct device structure the regulator belongs to.
init_data is the most important field of the structure, since it contains an
element holding the regulator constraints (a machine specific structure).
driver_data holds the regulator's private data.
of_node is for DT capable drivers. It is the node to parse for DT bindings. It is up
to the developer to set this field. It may be NULL also.

Device operation structure
The struct regulator_ops structure is a list of callbacks representing all operations a
regulator can perform. These callbacks are helpers and are wrapped by generic kernel
functions:

struct regulator_ops {

 /* enumerate supported voltages */

 int (*list_voltage) (struct regulator_dev *,

 unsigned selector);

 /* get/set regulator voltage */

 int (*set_voltage) (struct regulator_dev *,

 int min_uV, int max_uV,

 unsigned *selector);

 int (*map_voltage)(struct regulator_dev *,

 int min_uV, int max_uV);

Regulator Framework

[478]

 int (*set_voltage_sel) (struct regulator_dev *,

 unsigned selector);

 int (*get_voltage) (struct regulator_dev *);

 int (*get_voltage_sel) (struct regulator_dev *);

 /* get/set regulator current */

 int (*set_current_limit) (struct regulator_dev *,

 int min_uA, int max_uA);

 int (*get_current_limit) (struct regulator_dev *);

 int (*set_input_current_limit) (struct regulator_dev *,

 int lim_uA);

 int (*set_over_current_protection) (struct regulator_dev *);

 int (*set_active_discharge) (struct regulator_dev *,

 bool enable);

 /* enable/disable regulator */

 int (*enable) (struct regulator_dev *);

 int (*disable) (struct regulator_dev *);

 int (*is_enabled) (struct regulator_dev *);

 /* get/set regulator operating mode (defined in consumer.h) */

 int (*set_mode) (struct regulator_dev *, unsigned int mode);

 unsigned int (*get_mode) (struct regulator_dev *);

};

Callback names explain quite well what they do. There are other callbacks that are not listed
here, for which you must enable the appropriate mask in valid_ops_mask or
valid_modes_mask of the regulator's constraints before the consumer can use them.
Available operation mask flags are defined in include/linux/regulator/machine.h.

Therefore, given a struct regulator_dev structure, one can get the ID of the
corresponding regulator by calling the rdev_get_id() function:

int rdev_get_id(struct regulator_dev *rdev)

Driver methods
Driver methods consist of probe() and remove() functions. Please refer to the preceding
data structure if this section seems unclear to you.

Regulator Framework

[479]

Probe function
The probe function of a PMIC driver can be split into a few steps, enumerated as follows:

Define an array of struct regulator_desc objects for all the regulators1.
provided by this PMIC. In this step, you should have defined a valid struct
regulator_ops to be linked to the appropriate regulator_desc. It could be
the same regulator_ops for all, assuming they all support the same operations.
Now in the probe function, for each regulator:2.

Fetch the appropriate struct regulator_init_data either from
the platform data, which must already contain a valid struct
regulation_constraints or build a struct
regulation_constraints from DT, in order to build a new
struct regulator_init_data object.
Use the previous struct regulator_init_data to set up a
struct regulator_config structure. If the driver supports DT,
one can make regulator_config.of_node point to the node
used to extract the regulator properties.
Call regulator_register() (or the managed version
devm_regulator_register()) to register the regulator with the
core, giving the previous regulator_desc and
regulator_config as parameters.

A regulator is registered with the kernel using the regulator_register() function, or
devm_regulator_register(), which is the managed version:

struct regulator_dev * regulator_register(const struct regulator_desc

*regulator_desc, const struct regulator_config *cfg)

This function returns a data type we have not discussed so far: a struct regulator_dev
object, defined in include/linux/regulator/driver.h. That structure represents an
instance of a regulator device from the producer side (it is different in the consumer side).
Instances of the struct regulator_dev structure should not be used directly by anything
except the regulator core and notification injection (which should take the mutex and not
other direct access). That being said, to keep track of the registered regulator from within
the driver, one should hold references for each regulator_dev object returned by the
registering function.

Regulator Framework

[480]

Remove function
The remove() function is where every operation performed earlier during the probe.
Therefore, the essential function you should keep in mind is regulator_unregister(),
when it comes to removing a regulator from the system:

void regulator_unregister(struct regulator_dev *rdev)

This function accepts a pointer to a struct regulator_dev structure as a parameter. This
is another reason a reference for each registered regulator should be kept. The following is
the remove function of the ISL6271A driver:

static int __devexit isl6271a_remove(struct i2c_client *i2c)

{

 struct isl_pmic *pmic = i2c_get_clientdata(i2c);

 int i;

 for (i = 0; i < 3; i++)

 regulator_unregister(pmic->rdev[i]);

 kfree(pmic);

 return 0;

}

Case study: Intersil ISL6271A voltage regulator
As a recall, this PMIC provides three regulator's devices, among which only one can have
its output value changed. The two others provide fixed voltages:

struct isl_pmic {

 struct i2c_client *client;

 struct regulator_dev *rdev[3];

 struct mutex mtx;

};

Regulator Framework

[481]

First we define ops callbacks, to set up a struct regulator_desc:

Callback to handle a get_voltage_sel operation:1.

static int isl6271a_get_voltage_sel(struct regulator_dev *rdev)

{

 struct isl_pmic *pmic = rdev_get_drvdata(dev);

 int idx = rdev_get_id(rdev);

 idx = i2c_smbus_read_byte(pmic->client);

 if (idx < 0)

 [...] /* handle this error */

 return idx;

}

The following is the callback to handle a set_voltage_sel operation:

static int isl6271a_set_voltage_sel(

struct regulator_dev *dev, unsigned selector)

{

 struct isl_pmic *pmic = rdev_get_drvdata(dev);

 int err;

 err = i2c_smbus_write_byte(pmic->client, selector);

 if (err < 0)

 [...] /* handle this error */

 return err;

}

Since we are done with the callback definition, we can build a struct2.
regulator_ops:

static struct regulator_ops isl_core_ops = {

 .get_voltage_sel = isl6271a_get_voltage_sel,

 .set_voltage_sel = isl6271a_set_voltage_sel,

 .list_voltage = regulator_list_voltage_linear,

 .map_voltage = regulator_map_voltage_linear,

};

static struct regulator_ops isl_fixed_ops = {

 .list_voltage = regulator_list_voltage_linear,

};

Regulator Framework

[482]

You can ask yourself where the regulator_list_voltage_linear and
regulator_list_voltage_linear functions come from. As with many
other regulator helper functions, they are also defined in
drivers/regulator/helpers.c. The kernel provides helper functions
for linear output regulators, as is the case for the ISL6271A.

It is time to build an array of struct regulator_desc for all regulators:

static const struct regulator_desc isl_rd[] = {

 {

 .name = "Core Buck",

 .id = 0,

 .n_voltages = 16,

 .ops = &isl_core_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 .min_uV = ISL6271A_VOLTAGE_MIN,

 .uV_step = ISL6271A_VOLTAGE_STEP,

 }, {

 .name = "LDO1",

 .id = 1,

 .n_voltages = 1,

 .ops = &isl_fixed_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 .min_uV = 1100000,

 }, {

 .name = "LDO2",

 .id = 2,

 .n_voltages = 1,

 .ops = &isl_fixed_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 .min_uV = 1300000,

 },

};

Regulator Framework

[483]

LDO1 and LDO2 have a fixed output voltage. It is why their n_voltages
properties are set to 1, and their ops only provide
regulator_list_voltage_linear mapping.

Now we are in the probe function, the place where we need to build our struct3.
init_data structures. If you remember, we will use the struct
of_regulator_match introduced previously. We should declare an array of
that type, in which we should set the .name property of each regulator, for which
we need to fetch init_data:

static struct of_regulator_match isl6271a_matches[] = {

 { .name = "core_buck", },

 { .name = "ldo1", },

 { .name = "ldo2", },

};

Looking a bit closer, you will notice that the .name property is set with exactly the same
value as the label of the regulator in the device tree. This is a rule you should care about and
respect.

Now let us look at the probe function. The ISL6271A provides three regulator outputs,
which means that the regulator_register() function should be called three times:

static int isl6271a_probe(struct i2c_client *i2c,

 const struct i2c_device_id *id)

{

struct regulator_config config = { };

struct regulator_init_data *init_data =

dev_get_platdata(&i2c->dev);

struct isl_pmic *pmic;

int i, ret;

 struct device *dev = &i2c->dev;

 struct device_node *np, *parent;

 if (!i2c_check_functionality(i2c->adapter,

 I2C_FUNC_SMBUS_BYTE_DATA))

 return -EIO;

 pmic = devm_kzalloc(&i2c->dev,

sizeof(struct isl_pmic), GFP_KERNEL);

 if (!pmic)

 return -ENOMEM;

 /* Get the device (PMIC) node */

 np = of_node_get(dev->of_node);

Regulator Framework

[484]

 if (!np)

 return -EINVAL;

 /* Get 'regulators' subnode */

 parent = of_get_child_by_name(np, "regulators");

 if (!parent) {

 dev_err(dev, "regulators node not found\n");

 return -EINVAL;

 }

 /* fill isl6271a_matches array */

 ret = of_regulator_match(dev, parent, isl6271a_matches,

 ARRAY_SIZE(isl6271a_matches));

 of_node_put(parent);

 if (ret < 0) {

 dev_err(dev, "Error parsing regulator init data: %d\n",

 ret);

 return ret;

 }

 pmic->client = i2c;

 mutex_init(&pmic->mtx);

 for (i = 0; i < 3; i++) {

 struct regulator_init_data *init_data;

 struct regulator_desc *desc;

 int val;

 if (pdata)

 /* Given as platform data */

 config.init_data = pdata->init_data[i];

 else

 /* Fetched from device tree */

 config.init_data = isl6271a_matches[i].init_data;

 config.dev = &i2c->dev;

config.of_node = isl6271a_matches[i].of_node;

config.ena_gpio = -EINVAL;

 /*

 * config is passed by reference because the kernel

 * internally duplicate it to create its own copy

 * so that it can override some fields

 */

 pmic->rdev[i] = devm_regulator_register(&i2c->dev,

 &isl_rd[i], &config);

 if (IS_ERR(pmic->rdev[i])) {

Regulator Framework

[485]

 dev_err(&i2c->dev, "failed to register %s\n",

id->name);

 return PTR_ERR(pmic->rdev[i]);

 }

 }

 i2c_set_clientdata(i2c, pmic);

 return 0;

}

init_data can be NULL for a fixed regulator. It means that for the
ISL6271A, only the regulator whose voltage output may change may be
assigned an init_data.

/* Only the first regulator actually need it */

if (i == 0)

 if(pdata)

 config.init_data = init_data; /* pdata */

 else

 isl6271a_matches[i].init_data; /* DT */

else

 config.init_data = NULL;

The preceding driver does not fill every field of the struct regulator_desc. It greatly
depends on the type of device for which we write a driver. Some drivers leave the whole job
to the regulator core, and only provide the chip's register address, which the regulator core
needs to work with. Such drivers use regmap API, which is a generic I2C and SPI register
map library. drivers/regulator/max8649.c is an example.

Driver example
Let's summarize things discussed previously in a real driver, for a dummy PMIC with two
regulators, where the first one has a voltage range of 850000 �V to 1600000 �V with a step of
50000 �V, and the second regulator has a fixed voltage of 1300000 �V:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/platform_device.h> /* For platform devices */

#include <linux/interrupt.h> /* For IRQ */

#include <linux/of.h> /* For DT*/

#include <linux/err.h>

#include <linux/regulator/driver.h>

#include <linux/regulator/machine.h>

Regulator Framework

[486]

#define DUMMY_VOLTAGE_MIN 850000

#define DUMMY_VOLTAGE_MAX 1600000

#define DUMMY_VOLTAGE_STEP 50000

struct my_private_data {

 int foo;

 int bar;

 struct mutex lock;

};

static const struct of_device_id regulator_dummy_ids[] = {

 { .compatible = "packt,regulator-dummy", },

 { /* sentinel */ }

};

static struct regulator_init_data dummy_initdata[] = {

 [0] = {

 .constraints = {

 .always_on = 0,

 .min_uV = DUMMY_VOLTAGE_MIN,

 .max_uV = DUMMY_VOLTAGE_MAX,

 },

 },

 [1] = {

 .constraints = {

 .always_on = 1,

 },

 },

};

static int isl6271a_get_voltage_sel(struct regulator_dev *dev)

{

 return 0;

}

static int isl6271a_set_voltage_sel(struct regulator_dev *dev,

 unsigned selector)

{

 return 0;

}

static struct regulator_ops dummy_fixed_ops = {

 .list_voltage = regulator_list_voltage_linear,

};

static struct regulator_ops dummy_core_ops = {

Regulator Framework

[487]

 .get_voltage_sel = isl6271a_get_voltage_sel,

 .set_voltage_sel = isl6271a_set_voltage_sel,

 .list_voltage = regulator_list_voltage_linear,

 .map_voltage = regulator_map_voltage_linear,

};

static const struct regulator_desc dummy_desc[] = {

 {

 .name = "Dummy Core",

 .id = 0,

 .n_voltages = 16,

 .ops = &dummy_core_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 .min_uV = DUMMY_VOLTAGE_MIN,

 .uV_step = DUMMY_VOLTAGE_STEP,

 }, {

 .name = "Dummy Fixed",

 .id = 1,

 .n_voltages = 1,

 .ops = &dummy_fixed_ops,

 .type = REGULATOR_VOLTAGE,

 .owner = THIS_MODULE,

 .min_uV = 1300000,

 },

};

static int my_pdrv_probe (struct platform_device *pdev)

{

 struct regulator_config config = { };

 config.dev = &pdev->dev;

 struct regulator_dev *dummy_regulator_rdev[2];

 int ret, i;

 for (i = 0; i < 2; i++){

 config.init_data = &dummy_initdata[i];

 dummy_regulator_rdev[i] = \

 regulator_register(&dummy_desc[i], &config);

 if (IS_ERR(dummy_regulator_rdev)) {

 ret = PTR_ERR(dummy_regulator_rdev);

 pr_err("Failed to register regulator: %d\n", ret);

 return ret;

 }

 }

 platform_set_drvdata(pdev, dummy_regulator_rdev);

 return 0;

}

Regulator Framework

[488]

static void my_pdrv_remove(struct platform_device *pdev)

{

 int i;

 struct regulator_dev *dummy_regulator_rdev = \

 platform_get_drvdata(pdev);

 for (i = 0; i < 2; i++)

 regulator_unregister(&dummy_regulator_rdev[i]);

}

static struct platform_driver mypdrv = {

 .probe = my_pdrv_probe,

 .remove = my_pdrv_remove,

 .driver = {

 .name = "regulator-dummy",

 .of_match_table = of_match_ptr(regulator_dummy_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_LICENSE("GPL");

Once the module is loaded and the device matched, the kernel will print something like
this:

Dummy Core: at 850 mV
Dummy Fixed: 1300 mV

One can then check what happened under the hood:

ls /sys/class/regulator/
regulator.0 regulator.11 regulator.14 regulator.4 regulator.7
regulator.1 regulator.12 regulator.2 regulator.5 regulator.8
regulator.10 regulator.13 regulator.3 regulator.6 regulator.9

Regulator Framework

[489]

regulator.13 and regulator.14 have been added by our driver. Let us now check their
properties:

cd /sys/class/regulator
cat regulator.13/name
Dummy Core
cat regulator.14/name
Dummy Fixed
cat regulator.14/type
voltage
cat regulator.14/microvolts
1300000
cat regulator.13/microvolts
850000

Regulators consumer interface
The consumer interface only requires the driver to include one header:

#include <linux/regulator/consumer.h>

A consumer can be static or dynamic. A static one requires only a fixed supply, whereas a
dynamic one requires active management of the regulator at runtime. From the consumer
point side, a regulator device is represented in the kernel as an instance of a struct
regulator structure, defined in drivers/regulator/internal.h and shown as follows:

/*

 * struct regulator

 *

 * One for each consumer device.

 */

struct regulator {

 struct device *dev;

 struct list_head list;

 unsigned int always_on:1;

 unsigned int bypass:1;

 int uA_load;

 int min_uV;

 int max_uV;

 char *supply_name;

 struct device_attribute dev_attr;

 struct regulator_dev *rdev;

 struct dentry *debugfs;

};

Regulator Framework

[490]

This structure is meaningful enough and does not need us to add any comments. To see
how easy it is to consume a regulator, here is a little example of how a consumer acquires a
regulator:

[...]

int ret;

struct regulator *reg;

const char *supply = "vdd1";

int min_uV, max_uV;

reg = regulator_get(dev, supply);

[...]

Regulator device requesting
Prior to gaining access to a regulator, the consumer has to request the kernel by means of
the regulator_get() function. It is also possible to use the managed version, the
devm_regulator_get() function:

struct regulator *regulator_get(struct device *dev,

const char *id)

An example of using this function is:

 reg = regulator_get(dev, "Vcc");

The consumer passes in its struct device pointer and power supply ID. The core will try
to find the correct regulator by consulting the DT or a machine-specific lookup table. If we
focus only on the device tree, *id should match the <name> pattern of the regulator supply
in the device tree. If the lookup is successful then this call will return a pointer to the
struct regulator that supplies this consumer.

To release the regulator, the consumer driver should call:

void regulator_put(struct regulator *regulator)

Prior to calling this function, the driver should ensure that all regulator_enable() calls
made on this regulator source are balanced by regulator_disable() calls.

More than one regulator can supply a consumer, for example, codec consumers with analog
and digital supplies:

 digital = regulator_get(dev, "Vcc"); /* digital core */

 analog = regulator_get(dev, "Avdd"); /* analog */

Regulator Framework

[491]

Consumer probe() and remove() functions are an appropriate place to grab and release
regulators.

Controlling the regulator device
Regulator control consists of enabling, disabling, and setting output values for a regulator.

Regulator output enable and disable
A consumer can enable its power supply by calling the following:

int regulator_enable(regulator);

This function returns 0 on success. The reverse operation consists of disabling the power
supply, by calling this:

int regulator_disable(regulator);

To check whether a regulator is already enabled or not, the consumer should call this:

int regulator_is_enabled(regulator);

This function returns a value greater than 0 if the regulator is enabled. Since the regulator
may be enabled early by the bootloader or shared with another consumer, one can use the
regulator_is_enabled() function to check the regulator state.

Here is an example,

 printk (KERN_INFO "Regulator Enabled = %d\n",

 regulator_is_enabled(reg));

For a shared regulator, regulator_disable() will actually disable the
regulator only when the enabled reference count is zero. That said, you
can force disabling in case of an emergency, for example, by calling
regulator_force_disable():

int regulator_force_disable(regulator);

Each of the functions that we will discuss in the sections that follows is actually a wrapper
around a regulator_ops operation. For example, regulator_set_voltage() internally
calls regulator_ops.set_voltage after checking the corresponding mask allowing this
operation is set, and so on.

Regulator Framework

[492]

Voltage control and status
For consumers that need to adapt their power supplies according to their operating modes,
the kernel provides this:

int regulator_set_voltage(regulator, min_uV, max_uV);

min_uV and max_uV are the minimum and maximum acceptable voltages in microvolts.

If called when the regulator is disabled, this function will change the voltage configuration
so that the voltage is physically set when the regulator is next enabled. That said,
consumers can get the regulator configured voltage output by calling
regulator_get_voltage(), which will return the configured output voltage whether the
regulator is enabled or not:

int regulator_get_voltage(regulator);

Here is an example,

printk (KERN_INFO "Regulator Voltage = %d\n",

regulator_get_voltage(reg));

Current limit control and status
What we have discussed in the voltage section also applies here. For example, USB drivers
may want to set the limit to 500 mA when supplying power.

Consumers can control their supply current limit by calling:

int regulator_set_current_limit(regulator, min_uA, max_uA);

min_uA and max_uA are the minimum and maximum acceptable current limits in
microamps.

In the same way, consumers can get the regulator configured to the current limit by calling
regulator_get_current_limit(), which will return the current limit whether the
regulator is enabled or not:

int regulator_get_current_limit(regulator);

Regulator Framework

[493]

Operating mode control and status
For efficient power management, some consumers may change the operating mode of their
supply when their (consumers) operating state changes. Consumer drivers can request a
change in their supply regulator operating mode by calling:

int regulator_set_optimum_mode(struct regulator *regulator,

int load_uA);

int regulator_set_mode(struct regulator *regulator,

unsigned int mode);

unsigned int regulator_get_mode(struct regulator *regulator);

Consumers should use regulator_set_mode() on a regulator only when it knows about
the regulator and does not share the regulator with other consumers. This is known as
direct mode. regulator_set_uptimum_mode() causes the core to undertake some
background work in order to determine what operating mode is best for the requested
current. This is called the indirect mode.

Regulator binding
This section only deals with consumer interface binding. Because PMIC binding consists of
providing init data for regulators that this PMIC provides, you should refer to the
section Feeding init data into the DT to understand producer binding.

Consumer nodes can reference one or more of its supplies/regulators using the following
bindings:

<name>-supply: phandle to the regulator node

It is the same principle as PWM consumer binding. <name> should be meaningful enough,
so that the driver can easily refer to it when requesting the regulator. That said, <name>
must match the *id parameter of the regulator_get() function:

twl_reg1: regulator@0 {

 [...]

};

twl_reg2: regulator@1 {

 [...]

};

mmc: mmc@0x0 {

 [...]

 vmmc-supply = <&twl_reg1>;

Regulator Framework

[494]

 vmmcaux-supply = <&twl_reg2>;

};

The consumer code (which is the MMC driver) that actually requests its supplies could look
like this:

struct regulator *main_regulator;

struct regulator *aux_regulator;

int ret;

main_regulator = devm_regulator_get(dev, "vmmc");

/*

 * It is a good practive to apply the config before

 * enabling the regulator

 */

if (!IS_ERR(io_regulator)) {

 regulator_set_voltage(main_regulator,

 MMC_VOLTAGE_DIGITAL,

 MMC_VOLTAGE_DIGITAL);

 ret = regulator_enable(io_regulator);

}

[...]

aux_regulator = devm_regulator_get(dev, "vmmcaux");

[...]

Summary
With the wide range of devices that need to be smartly and smoothly supplied, this chapter
can be relied on to take care of their power supply management. PMIC devices usually sit
on SPI or I2C buses. Having already dealt with these buses in previous chapters, you
should be able to write any PMIC driver. Let's now jump to the next chapter, which deals
with framebuffer drivers, which is a completely different and no less interesting topic.

21
Framebuffer Drivers

Video cards always have a certain amount of RAM. This RAM is where the bitmap of image
data is buffered for display. From the software point of view, the framebuffer is a character
device providing access to this RAM.

That said, a framebuffer driver provides an interface for:

Display mode setting
Memory access to the video buffer
Basic 2D acceleration operations (for example, scrolling)

To provide this interface, the framebuffer driver generally talks to the hardware directly.
There are well-known framebuffer drivers such as:

intelfb, which is a framebuffer for various Intel 8xx/9xx compatible graphic
devices
vesafb, which is a framebuffer driver that uses the VESA standard interface to
talk to the video hardware
mxcfb, the framebuffer driver for i.MX6 chip series

Framebuffer drivers are the simplest form of graphics drivers under Linux, not to confuse
them with X.org drivers, which implement advanced features such as 3D acceleration and
so on, or Kernel mode setting (KMS) drivers, which expose both framebuffer and GPU
functionalities (like X.org drivers do).

i.MX6 X.org driver is a closed source and called vivante.

Framebuffer Drivers

[496]

Back to our framebuffer drivers, they are very simple API drivers that expose video card
functionalities by means of character devices, accessible from the user space through
/dev/fbX entries. One can find more information on Linux graphical stack in the
comprehensive talk Linux Graphics Demystified by Martin Fiedler:
http://keyj.emphy.de/files/linuxgraphics_en.pdf.

In this chapter, we cover the following topics:

Framebuffer driver data structures and methods, thus covering the whole driver
architecture
Framebuffer device operations, accelerated and non-accelerated
Accessing framebuffer from user space

Driver data structures
The framebuffer drivers depend heavily on four data structures, all defined in
include/linux/fb.h, which is also the header you should include in your code in order
to deal with framebuffer driver:

#include <linux/fb.h>

These structures are fb_var_screeninfo, fb_fix_screeninfo, fb_cmap, and fb_info.
The first three are made available to and from user space code. Now let us describe the
purpose of each structure, their meaning, and what they are used for.

The kernel use an instance of struct struct fb_var_screeninfo to hold1.
variable properties of the video card. These values are those defined by the user,
such as resolution depth:

struct fb_var_screeninfo {

 __u32 xres; /* visible resolution */

 __u32 yres;

 __u32 xres_virtual; /* virtual resolution */

 __u32 yres_virtual;

 __u32 xoffset; /* offset from virtual to visible resolution */

 __u32 yoffset;

 __u32 bits_per_pixel; /* # of bits needed to hold a pixel */

 [...]

 /* Timing: All values in pixclocks, except pixclock (of course)

http://keyj.emphy.de/files/linuxgraphics_en.pdf

Framebuffer Drivers

[497]

*/

 __u32 pixclock; /* pixel clock in ps (pico seconds) */

 __u32 left_margin; /* time from sync to picture */

 __u32 right_margin; /* time from picture to sync */

 __u32 upper_margin; /* time from sync to picture */

 __u32 lower_margin;

 __u32 hsync_len; /* length of horizontal sync */

 __u32 vsync_len; /* length of vertical sync */

 __u32 rotate; /* angle we rotate counter clockwise */

};

This can be summarized into a figure shown as follows:

Framebuffer Drivers

[498]

There are properties of video card that are fixed, either by the manufacturer, or2.
applied when a mode is set, and can't be changed otherwise. This is generally
hardware information. A good example of this is the start of the framebuffer
memory, which cannot change, even by user program. The kernel holds such
information in an instance of struct fb_fix_screeninfo structure:

struct fb_fix_screeninfo {

 char id[16]; /* identification string eg "TT Builtin" */

 unsigned long smem_start; /* Start of frame buffer mem */

 /* (physical address) */

 __u32 smem_len;/* Length of frame buffer mem */

 __u32 type; /* see FB_TYPE_* */

 __u32 type_aux; /* Interleave for interleaved Planes */

 __u32 visual; /* see FB_VISUAL_* */

 __u16 xpanstep; /* zero if no hardware panning */

 __u16 ypanstep; /* zero if no hardware panning */

 __u16 ywrapstep; /* zero if no hardware ywrap */

 __u32 line_length; /* length of a line in bytes */

 unsigned long mmio_start; /* Start of Memory Mapped I/O

 *(physical address)

 */

 __u32 mmio_len; /* Length of Memory Mapped I/O */

 __u32 accel; /* Indicate to driver which */

 /* specific chip/card we have */

 __u16 capabilities; /* see FB_CAP_* */

};

The struct fb_cmap structure specifies the color map, which is used to store the3.
user's definition of colors in a manner the kernel can understand, in order to send
it to the underlying video hardware. One can use this structure to define the RGB
ratio that you desire for different colors:

struct fb_cmap {

 __u32 start; /* First entry */

 __u32 len; /* Number of entries */

 __u16 *red; /* Red values */

 __u16 *green; /* Green values */

 __u16 *blue; /* Blue values */

 __u16 *transp; /* Transparency. Discussed later on */

};

Framebuffer Drivers

[499]

The struct fb_info structure, which represents the framebuffer itself, is the4.
main data structure of framebuffer drivers. Unlike other preceding structure
discussed, fb_info exists only in the kernel, and is not part of the user space
framebuffer API:

struct fb_info {

 [...]

 struct fb_var_screeninfo var; /* Variable screen information.

 Discussed earlier. */

 struct fb_fix_screeninfo fix; /* Fixed screen information. */

 struct fb_cmap cmap; /* Color map. */

 struct fb_ops *fbops; /* Driver operations.*/

 char __iomem *screen_base; /* Frame buffer's

 virtual address */

 unsigned long screen_size; /* Frame buffer's size */

 [...]

 struct device *device; /* This is the parent */

struct device *dev; /* This is this fb device */

#ifdef CONFIG_FB_BACKLIGHT

 /* assigned backlight device */

 /* set before framebuffer registration,

 remove after unregister */

 struct backlight_device *bl_dev;

 /* Backlight level curve */

 struct mutex bl_curve_mutex;

 u8 bl_curve[FB_BACKLIGHT_LEVELS];

#endif

[...]

void *par; /* Pointer to private memory */

};

struct fb_info structure should always be allocated dynamically, using
framebuffer_alloc(), which is a kernel (framebuffer core) helper functions to allocate
memory for instance of framebuffer devices, along with their private data memory:

struct fb_info *framebuffer_alloc(size_t size, struct device *dev)

In this prototype, size represents the size of the private area as an argument and appends
that to the end of the allocated fb_info. This private area can be referenced using the .par
pointer in the fb_info structure. framebuffer_release() does the reverse operation:

void framebuffer_release(struct fb_info *info)

Framebuffer Drivers

[500]

Once set up, a framebuffer should be registered with the kernel using
register_framebuffer(), which returns negative errno on error, or zero for success:

int register_framebuffer(struct fb_info *fb_info)

Once registered, one can unregister the framebuffer with the unregister_framebuffer()
function, which also returns a negative errno on error, or zero for success:

int unregister_framebuffer(struct fb_info *fb_info)

Allocation and registering should be done during the device probing, whereas
unregistering and deallocation (release) should be done from within the driver's remove()
function.

Device methods
In the struct fb_info structure, there is a .fbops field, which is an instance of struct
fb_ops structure. This structure contains a collection of functions that need to perform
some operations on the framebuffer device. These are entry points for fbdev and fbcon
tools. Some methods in that structure are mandatory, the minimum required for a
framebuffer to work, whereas others are optional, and depend on the features the driver
needs to expose, assuming the device itself supports those features.

The following is the definition of the struct fb_ops structure:

 struct fb_ops {

 /* open/release and usage marking */

 struct module *owner;

 int (*fb_open)(struct fb_info *info, int user);

 int (*fb_release)(struct fb_info *info, int user);

 /* For framebuffers with strange nonlinear layouts or that do not

 * work with normal memory mapped access

 */

 ssize_t (*fb_read)(struct fb_info *info, char __user *buf,

 size_t count, loff_t *ppos);

 ssize_t (*fb_write)(struct fb_info *info, const char __user *buf,

 size_t count, loff_t *ppos);

 /* checks var and eventually tweaks it to something supported,

 * DO NOT MODIFY PAR */

 int (*fb_check_var)(struct fb_var_screeninfo *var, struct fb_info

*info);

Framebuffer Drivers

[501]

 /* set the video mode according to info->var */

 int (*fb_set_par)(struct fb_info *info);

 /* set color register */

 int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,

 unsigned blue, unsigned transp, struct fb_info *info);

 /* set color registers in batch */

 int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info);

 /* blank display */

 int (*fb_blank)(int blank_mode, struct fb_info *info);

 /* pan display */

 int (*fb_pan_display)(struct fb_var_screeninfo *var, struct fb_info

*info);

 /* Draws a rectangle */

 void (*fb_fillrect) (struct fb_info *info, const struct fb_fillrect

*rect);

 /* Copy data from area to another */

 void (*fb_copyarea) (struct fb_info *info, const struct fb_copyarea

*region);

 /* Draws a image to the display */

 void (*fb_imageblit) (struct fb_info *info, const struct fb_image

*image);

 /* Draws cursor */

 int (*fb_cursor) (struct fb_info *info, struct fb_cursor *cursor);

 /* wait for blit idle, optional */

 int (*fb_sync)(struct fb_info *info);

 /* perform fb specific ioctl (optional) */

 int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,

 unsigned long arg);

 /* Handle 32bit compat ioctl (optional) */

 int (*fb_compat_ioctl)(struct fb_info *info, unsigned cmd,

 unsigned long arg);

 /* perform fb specific mmap */

 int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);

 /* get capability given var */

 void (*fb_get_caps)(struct fb_info *info, struct fb_blit_caps *caps,

 struct fb_var_screeninfo *var);

Framebuffer Drivers

[502]

 /* teardown any resources to do with this framebuffer */

 void (*fb_destroy)(struct fb_info *info);

 [...]

};

Different callbacks can be set depending on what functionality one wishes to implement.

In Chapter 4, Character Device Drivers, we learned that character devices, by means of
struct file_operations structure, can export a collection of file operations, which are
entry points for file-related system calls such as open(), close(), read(), write(),
mmap(), ioctl(), and so on.

That being said, do not confuse fb_ops with file_operations structure. fb_ops offers
an abstraction of low-level operations, while file_operations is for an upper-level
system call interface. The kernel implements framebuffer file operations in
drivers/video/fbdev/core/fbmem.c, which internally call methods we defined in
fb_ops. In this manner, one can implement the low-level hardware operations according to
the need of the system call interface, namely the file_operations structure. For example,
when the user open() the device, the core's open file operation method will perform some
core operations, and execute fb_ops.fb_open() method if set, same for release, mmap,
and so on.

Framebuffer devices support some ioctl commands defined in
include/uapi/linux/fb.h, that user programs can use to operate on hardware. These
commands are all handled by the core's fops.ioctl method. For some of those
commands, the core's ioctl method may internally execute methods defined in fb_ops
structure.

One may wonder what the fb_ops.ffb_ioctl is used for. The framebuffer core executes
fb_ops.fb_ioctl only when the given ioctl command is not known to the kernel. In other
words, fb_ops.fb_ioctl is executed in the default statement of the framebuffer core's
fops.ioctl method.

Driver methods
Drivers methods consist of probe() and remove() functions. Prior to going further in
these method descriptions, let us set up our fb_ops structure:

static struct fb_ops myfb_ops = {

 .owner = THIS_MODULE,

 .fb_check_var = myfb_check_var,

 .fb_set_par = myfb_set_par,

Framebuffer Drivers

[503]

 .fb_setcolreg = myfb_setcolreg,

 .fb_fillrect = cfb_fillrect, /* Those three hooks are */

 .fb_copyarea = cfb_copyarea, /* non accelerated and */

 .fb_imageblit = cfb_imageblit, /* are provided by kernel */

 .fb_blank = myfb_blank,

};

Probe: Driver probe function is in charge of initializing the hardware, creating
the struct fb_info structure using framebuffer_alloc() function, and
register_framebuffer() on it. The following sample assumes the device is
memory mapped. Therefore, your nonmemory map can exist, such as screen
sitting on SPI buses. In this case, bus specific routines should be used:

static int myfb_probe(struct platform_device *pdev)

{

 struct fb_info *info;

 struct resource *res;

 [...]

 dev_info(&pdev->dev, "My framebuffer driver\n");

/*

 * Query resource, like DMA channels, I/O memory,

 * regulators, and so on.

 */

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 if (!res)

 return -ENODEV;

 /* use request_mem_region(), ioremap() and so on */

 [...]

 pwr = regulator_get(&pdev->dev, "lcd");

 info = framebuffer_alloc(sizeof(

struct my_private_struct), &pdev->dev);

 if (!info)

 return -ENOMEM;

 /* Device init and default info value*/

 [...]

 info->fbops = &myfb_ops;

 /* Clock setup, using devm_clk_get() and so on */

 [...]

 /* DMA setup using dma_alloc_coherent() and so on*/

 [...]

Framebuffer Drivers

[504]

 /* Register with the kernel */

 ret = register_framebuffer(info);

 hardware_enable_controller(my_private_struct);

 return 0;

}

Remove: The remove() function should release whatever was acquired in
probe(), and call:

static int myfb_remove(struct platform_device *pdev)

{

 /* iounmap() memory and release_mem_region() */

 [...]

 /* Reverse DMA, dma_free_*();*/

 [...]

 hardware_disable_controller(fbi);

 /* first unregister, */

 unregister_framebuffer(info);

 /* and then free the memory */

 framebuffer_release(info);

 return 0;

}

Assuming you used the manager version for resource allocations, you'll just need
to use unregister_framebuffer() and framebuffer_release().
Everything else will be done by the kernel.

Detailed fb_ops
Let us describe some of the hooks declared in fb_ops structure. That being said, for an idea
on writing framebuffer drivers, you can have a look at drivers/video/fbdev/vfb.c,
which is a simple virtual framebuffer driver in the kernel. One can also have a look at other
specific framebuffer drivers, like i.MX6 one, at drivers/video/fbdev/imxfb.c, or at the
kernel documentation about framebuffer driver API at Documentation/fb/api.txt.

Framebuffer Drivers

[505]

Checking information
The hook fb_ops->fb_check_var is responsible for checking framebuffer parameters. Its
prototype is as follows:

int (*fb_check_var)(struct fb_var_screeninfo *var,

struct fb_info *info);

This function should check framebuffer variable parameters and adjust to valid values. var
represents the framebuffer variable parameters, which should be checked and adjusted:

static int myfb_check_var(struct fb_var_screeninfo *var,

struct fb_info *info)

{

 if (var->xres_virtual < var->xres)

 var->xres_virtual = var->xres;

 if (var->yres_virtual < var->yres)

 var->yres_virtual = var->yres;

 if ((var->bits_per_pixel != 32) &&

(var->bits_per_pixel != 24) &&

(var->bits_per_pixel != 16) &&

(var->bits_per_pixel != 12) &&

 (var->bits_per_pixel != 8))

 var->bits_per_pixel = 16;

 switch (var->bits_per_pixel) {

 case 8:

 /* Adjust red*/

 var->red.length = 3;

 var->red.offset = 5;

 var->red.msb_right = 0;

 /*adjust green*/

 var->green.length = 3;

 var->green.offset = 2;

 var->green.msb_right = 0;

 /* adjust blue */

 var->blue.length = 2;

 var->blue.offset = 0;

 var->blue.msb_right = 0;

 /* Adjust transparency */

 var->transp.length = 0;

 var->transp.offset = 0;

 var->transp.msb_right = 0;

 break;

 case 16:

Framebuffer Drivers

[506]

 [...]

 break;

 case 24:

 [...]

 break;

 case 32:

 var->red.length = 8;

 var->red.offset = 16;

 var->red.msb_right = 0;

 var->green.length = 8;

 var->green.offset = 8;

 var->green.msb_right = 0;

 var->blue.length = 8;

 var->blue.offset = 0;

 var->blue.msb_right = 0;

 var->transp.length = 8;

 var->transp.offset = 24;

 var->transp.msb_right = 0;

 break;

 }

 /*

 * Any other field in *var* can be adjusted

 * like var->xres, var->yres, var->bits_per_pixel,

 * var->pixclock and so on.

 */

 return 0;

}

The preceding code adjusts variable framebuffer properties according to the configuration
chosen by user.

Set controller's parameters
The hook fp_ops->fb_set_par is another hardware specific hook, responsible for sending
parameters to the hardware. It programs the hardware based on user settings (info->var):

static int myfb_set_par(struct fb_info *info)

{

 struct fb_var_screeninfo *var = &info->var;

 /* Make some compute or other sanity check */

 [...]

Framebuffer Drivers

[507]

 /*

 * This function writes value to the hardware,

 * in the appropriate registers

 */

 set_controller_vars(var, info);

 return 0;

}

Screen blanking
The hook fb_ops->fb_blank is a hardware specific hook, responsible for screen blanking.
Its prototype is as follows:

int (*fb_blank)(int blank_mode, struct fb_info *info)

blank_mode parameter is always one of the following values:

enum {

 /* screen: unblanked, hsync: on, vsync: on */

 FB_BLANK_UNBLANK = VESA_NO_BLANKING,

 /* screen: blanked, hsync: on, vsync: on */

 FB_BLANK_NORMAL = VESA_NO_BLANKING + 1,

 /* screen: blanked, hsync: on, vsync: off */

 FB_BLANK_VSYNC_SUSPEND = VESA_VSYNC_SUSPEND + 1,

 /* screen: blanked, hsync: off, vsync: on */

 FB_BLANK_HSYNC_SUSPEND = VESA_HSYNC_SUSPEND + 1,

 /* screen: blanked, hsync: off, vsync: off */

 FB_BLANK_POWERDOWN = VESA_POWERDOWN + 1

};

The usual way of blank display is to do a switch case on the blank_mode parameter as
follows:

static int myfb_blank(int blank_mode, struct fb_info *info)

{

 pr_debug("fb_blank: blank=%d\n", blank);

 switch (blank) {

 case FB_BLANK_POWERDOWN:

 case FB_BLANK_VSYNC_SUSPEND:

 case FB_BLANK_HSYNC_SUSPEND:

 case FB_BLANK_NORMAL:

Framebuffer Drivers

[508]

 myfb_disable_controller(fbi);

 break;

 case FB_BLANK_UNBLANK:

 myfb_enable_controller(fbi);

 break;

 }

 return 0;

}

Blanking operation should disable the controller, stop its clocks and power it down.
Unblanking should perform the reverse operations.

Accelerated methods
Users video operations such as blending, stretching, moving bitmaps, or dynamic gradient
generation are all heavy-duty tasks. They require graphics acceleration to obtain acceptable
performance. One can implement framebuffer accelerated methods using the following
fields of struct fp_ops structure:

.fb_imageblit(): This method draws an image on the display and is very
useful
.fb_copyarea(): This method copies a rectangular area from one screen region
to another
.fb_fillrect(): This method fills in an optimized manner a rectangle with
pixel lines

Therefore, kernel developers thought of controllers that did not have hardware acceleration,
and provided a software-optimized method. This makes acceleration implementation
optional, since software fall-back exists. That said, if the framebuffer controller does not
provide any acceleration mechanism, one must populate these methods using the kernel
generic routines.

These are respectively:

cfb_imageblit(): This is a kernel-provided fallback for imageblit. The kernel
uses it to output a logo to the screen during boot up.
cfb_copyarea(): This is for area copy operations.
cfb_fillrect(): This is the framebuffer core non-accelerated method to achieve
operations of the same name.

Framebuffer Drivers

[509]

Putting it all together
In this section, let us summarize things discussed in the preceding section. In order to write
framebuffer driver, one has to:

Fill a struct fb_var_screeninfo structure in order to provide information on
framebuffer variable properties. Those properties can be changed by user space.
Fill a struct fb_fix_screeninfo structure, to provide fixed parameters.
Set up a struct fb_ops structure, providing necessary callback functions,
which will used by the framebuffer subsystem in response to user actions.
Still in the struct fb_ops structure, one has to provide accelerated functions
callback, if supported by the device.
Set up a struct fb_info structure, feeding it with structures filled in previous
steps, and call register_framebuffer() on it in order to have it registered
with the kernel.

For an idea on writing a simple framebuffer driver, one can have a look at
drivers/video/fbdev/vfb.c, which is a virtual framebuffer driver in kernel. One can
enable this in the kernel by means of the CONGIF_FB_VIRTUAL option.

Framebuffer from user space
One usually accesses framebuffer memory by means of mmap() command in order to map
the framebuffer memory to the part of system RAM, so that drawing pixels on the screen
becomes a simple matter affecting memory value. Screen parameters (variable and fixed)
are extracted by means of ioctl commands, especially FBIOGET_VSCREENINFO and
FBIOGET_FSCREENINFO. The complete list is available at include/uapi/linux/fb.h in
the kernel source.

The following is a sample code to draw a 300*300 square on the framebuffer:

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <fcntl.h>

#include <linux/fb.h>

#include <sys/mman.h>

#include <sys/ioctl.h>

#define FBCTL(_fd, _cmd, _arg) \

 if(ioctl(_fd, _cmd, _arg) == -1) { \

Framebuffer Drivers

[510]

 ERROR("ioctl failed"); \

 exit(1); }

int main()

{

 int fd;

 int x, y, pos;

 int r, g, b;

 unsigned short color;

 void *fbmem;

 struct fb_var_screeninfo var_info;

 struct fb_fix_screeninfo fix_info;

 fd = open(FBVIDEO, O_RDWR);

 if (tfd == -1 || vfd == -1) {

 exit(-1);

 }

 /* Gather variable screen info (virtual and visible) */

 FBCTL(fd, FBIOGET_VSCREENINFO, &var_info);

 /* Gather fixed screen info */

 FBCTL(fd, FBIOGET_FSCREENINFO, &fix_info);

 printf("****** Frame Buffer Info ******\n");

 printf("Visible: %d,%d \nvirtual: %d,%d \n line_len %d\n",

 var_info.xres, this->var_info.yres,

 var_info.xres_virtual, var_info.yres_virtual,

 fix_info.line_length);

 printf("dim %d,%d\n\n", var_info.width, var_info.height);

 /* Let's mmap frame buffer memory */

 fbmem = mmap(0, v_var.yres_virtual * v_fix.line_length, \

 PROT_WRITE | PROT_READ, \

 MAP_SHARED, fd, 0);

 if (fbmem == MAP_FAILED) {

 perror("Video or Text frame bufer mmap failed");

 exit(1);

 }

 /* upper left corner (100,100). The square is 300px width */

 for (y = 100; y < 400; y++) {

 for (x = 100; x < 400; x++) {

 pos = (x + vinfo.xoffset) * (vinfo.bits_per_pixel / 8)

 + (y + vinfo.yoffset) * finfo.line_length;

Framebuffer Drivers

[511]

 /* if 32 bits per pixel */

 if (vinfo.bits_per_pixel == 32) {

 /* We prepare some blue color */

 *(fbmem + pos) = 100;

 /* adding a little green */

 *(fbmem + pos + 1) = 15+(x-100)/2;

 /* With lot of read */

 *(fbmem + pos + 2) = 200-(y-100)/5;

 /* And no transparency */

 *(fbmem + pos + 3) = 0;

 } else { /* This assume 16bpp */

 r = 31-(y-100)/16;

 g = (x-100)/6;

 b = 10;

 /* Compute color */

 color = r << 11 | g << 5 | b;

 ((unsigned short int)(fbmem + pos)) = color;

 }

 }

 }

 munmap(fbp, screensize);

 close(fbfd);

 return 0;

}

One can also dump the framebuffer memory into a raw image, using cat or dd command:

 # cat /dev/fb0 > my_image

Write it back using:

 # cat my_image > /dev/fb0

It is possible to blank/unblank the screen through a special
/sys/class/graphics/fb<N>/blank sysfs file, where <N> is the framebuffer index.
Writing a 1 will blank the screen, whereas 0 will unblank it:

 # echo 0 > /sys/class/graphics/fb0/blank
 # echo 1 > /sys/class/graphics/fb0/blank

Framebuffer Drivers

[512]

Summary
The framebuffer drivers are the simplest form of Linux graphics drivers, requiring little
implementation work. They heavily abstract hardware. At this stage, you should be able to
enhance either an existing driver (with graphical acceleration functions for example), or
write a fresh one from scratch. However, it is recommended to rely on an existing driver
whose hardware shares as many characteristics as possible with the one you need to write
the driver for. Let us jump to the next and last chapter, dealing with network devices.

22
Network Interface Card Drivers

We all know that networking is inherent to the Linux kernel. Some years ago, Linux was
only used for its network performances, but things have changed now; Linux is much more
than a server, and runs on billions of embedded devices. Through the years, Linux gained
the reputation of being the best network operating system. In spite of all this, Linux cannot
do everything. Given the huge variety of Ethernet controllers that exist, Linux has found no
other way than to expose an API to developers who need a writing driver for their network
device, or who need to perform kernel networking development in a general manner. This
API offers a sufficient abstraction layer, allowing for gauranteeing the generosity of the
developed code, as well as porting on other architectures. This chapter will simply walk
through the part of this API that deals with Network Interface Card (NIC) driver
development, and discuss its data structures and methods.

In this chapter, we will cover the following topics:

NIC driver data structure and a walk through its main socket buffer structure
NIC driver architecture and methods description, as well as packets transmission
and reception
Developing a dummy NIC driver for testing purposes

Network Interface Card Drivers

[514]

Driver data structures
When you deal with NIC devices, there are two data structures that you need to play with:

The struct sk_buff structure, defined in include/linux/skbuff.h, which
is the fundamental data structure in the Linux networking code, and which
should be included in your code:

#include <linux/skbuff.h>

Each packet sent or received is handled using this data structure.
The struct net_device structure; this is the structure by which any NIC
device is represented in the kernel. It is the interface by which data transit takes
place. It is defined in include/linux/netdevice.h, which should also be
included in your code:

#include <linux/netdevice.h>

Other files that one should include in the code are include/linux/etherdevice.h for
MAC and Ethernet-related functions (such as alloc_etherdev()) and
include/linux/ethtool.h for ethtools support:

#include <linux/ethtool.h>

#include <linux/etherdevice.h>

The socket buffer structure
This structure wraps any packet that transits through an NIC:

struct sk_buff {

 struct sk_buff * next;

 struct sk_buff * prev;

 ktime_t tstamp;

 struct rb_node rbnode; /* used in netem & tcp stack */

 struct sock * sk;

 struct net_device * dev;

 unsigned int len;

 unsigned int data_len;

 __u16 mac_len;

 __u16 hdr_len;

 unsigned int len;

 unsigned int data_len;

 __u16 mac_len;

 __u16 hdr_len;

Network Interface Card Drivers

[515]

 __u32 priority;

 dma_cookie_t dma_cookie;

 sk_buff_data_t tail;

 sk_buff_data_t end;

 unsigned char * head;

 unsigned char * data;

 unsigned int truesize;

 atomic_t users;

};

The following is the meanings of the elements in the structure:

next and prev : This represents the next and previous buffer in the list.
sk: This is the socket associated with this packet.
tstamp: This is the time when the packet arrived/left.
rbnode: This is an alternative to next/prev represented in a red-black tree.
dev: This represents the device this packet arrived on/is leaving by. This field is
associated with two other fields not listed here. These are input_dev and
real_dev. They track devices associated with the packet. Therefore, input_dev
always refers to a device the packet is received from.
len: This is the total number of bytes in the packet. Socket Buffers (SKBs) are
composed of a linear data buffer and, optionally, a set of one or more regions
called rooms. In case there are such rooms, data_len will hold the total number
of bytes of the data area.
mac_len: This holds the length of the MAC header.
csum: This contains the checksum of the packet.
Priority: This represents the packet priority in QoS.
truesize: This keeps track of how many bytes of system memory are consumed
by a packet, including the memory occupied by the struct sk_buff structure
itself.
users: This is used for reference counting for the SKB objects.
Head: Head, data, tail are pointers to different regions (rooms) in the socket
buffer.
end: This points to the end of the socket buffer.

Only a few fields of this structure have been discussed here. A full description is available
in include/linux/skbuff.h., which is the header file you should include to deal with
socket buffers.

Network Interface Card Drivers

[516]

Socket buffer allocation
Allocation of a socket buffer is a bit tricky, since it needs at least three different functions:

First of all, the whole memory allocation should be done using the
netdev_alloc_skb() function
Increase and align header room with the skb_reserve() function
Extend the used data area of the buffer (which will contain the packet) using the
skb_put() function.

Let us have a look at the following figure:

Socket buffers allocation process

We allocate a buffer large enough to contain a packet along with the Ethernet1.
header by means of the netdev_alloc_skb() function:

struct sk_buff *netdev_alloc_skb(struct net_device *dev,

 unsigned int length)

This function returns NULL on failure. Therefore, even if it allocates memory,
netdev_alloc_skb() can be called from an atomic context.

Network Interface Card Drivers

[517]

Since the Ethernet header is 14 bytes long, it needs to have some alignment so that
the CPU does not encounter any performance issues while accessing that part of
the buffer. The appropriate name of the header_len parameter should be
header_alignment, since this parameter is used for alignment. The usual value
is 2, and it is the reason why the kernel defined a dedicated macro for this
purpose, NET_IP_ALIGN, in include/linux/skbuff.h:

#define NET_IP_ALIGN 2

The second step reserves aligned memory for the header by reducing the tail2.
room. The function that does is skb_reserve():

void skb_reserve(struct sk_buff *skb, int len)

The last step consists of extending the used data area of the buffer to as large as3.
the packet size, by means of the skb_put() function. This function returns a
pointer to the first byte of the data area:

unsigned char *skb_put(struct sk_buff *skb, unsigned int len)

The allocated socket buffer should be forwarded to the kernel-networking layer.
This is the last step of the socket buffer's lifecycle. One should use the
netif_rx_ni() function for that:

int netif_rx_ni(struct sk_buff *skb)

We will discuss how to use the preceding steps in the section of this chapter that deals with
packet reception.

Network interface structure
A network interface is represented in the kernel as an instance of struct net_device
structure, defined in include/linux/netdevice.h:

struct net_device {

 char name[IFNAMSIZ];

 char *ifalias;

 unsigned long mem_end;

 unsigned long mem_start;

 unsigned long base_addr;

 int irq;

 netdev_features_t features;

 netdev_features_t hw_features;

 netdev_features_t wanted_features;

Network Interface Card Drivers

[518]

 int ifindex;

 struct net_device_stats stats;

 atomic_long_t rx_dropped;

 atomic_long_t tx_dropped;

 const struct net_device_ops *netdev_ops;

 const struct ethtool_ops *ethtool_ops;

 unsigned int flags;

 unsigned int priv_flags;

 unsigned char link_mode;

 unsigned char if_port;

 unsigned char dma;

 unsigned int mtu;

 unsigned short type;

 /* Interface address info. */

 unsigned char perm_addr[MAX_ADDR_LEN];

 unsigned char addr_assign_type;

 unsigned char addr_len;

 unsigned short neigh_priv_len;

 unsigned short dev_id;

 unsigned short dev_port;

 unsigned long last_rx;

 /* Interface address info used in eth_type_trans() */

 unsigned char *dev_addr;

 struct device dev;

 struct phy_device *phydev;

};

The struct net_device structure belongs to the kernel data structures that need to be
allocated dynamically, having their own allocation function. An NIC is allocated in the
kernel by means of the alloc_etherdev() function.

struct net_device *alloc_etherdev(int sizeof_priv);

The function returns NULL on failure. The sizeof_priv parameter represents the memory
size to be allocated for a private data structure, attached to this NIC, and which can be
extracted with the netdev_priv() function:

void *netdev_priv(const struct net_device *dev)

Given the struct priv_struct, which is our private structure, the following is an
implementation of how you allocate a network device along with the private data structure:

struct net_device *net_dev;

struct priv_struct *priv_net_struct;

net_dev = alloc_etherdev(sizeof(struct priv_struct));

my_priv_struct = netdev_priv(dev);

Network Interface Card Drivers

[519]

Unused network devices should be freed with the free_netdev() function, which also
frees memory allocated for private data. You should call this method only after the device
has been unregistered from the kernel:

void free_netdev(struct net_device *dev)

After your net_device structure has been completed and filled, you should call
register_netdev() on it. This function is explained later in this chapter in the section
Driver Methods. Just keep in mind this function registers our network device with the kernel,
so that it can be used. That being said, you should make sure the device really can process
network operations before calling this function.

int register_netdev(struct net_device *dev)

The device methods
Network devices fall into the category of devices not appearing in the /dev directory
(unlike block, input, or char devices). Therefore, like all of those kinds of devices, the NIC
driver exposes a set of facilities in order to perform. The kernel exposes operations that can
be performed on the network interfaces by means of the struct net_device_ops
structure, which is a field of the struct net_device structure, representing the network
device (dev->netdev_ops). The struct net_device_ops fields are described as follows:

struct net_device_ops {

 int (*ndo_init)(struct net_device *dev);

 void (*ndo_uninit)(struct net_device *dev);

 int (*ndo_open)(struct net_device *dev);

 int (*ndo_stop)(struct net_device *dev);

 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,

 struct net_device *dev);

 void (*ndo_change_rx_flags)(struct net_device *dev, int flags);

 void (*ndo_set_rx_mode)(struct net_device *dev);

 int (*ndo_set_mac_address)(struct net_device *dev, void *addr);

 int (*ndo_validate_addr)(struct net_device *dev);

 int (*ndo_do_ioctl)(struct net_device *dev,

 struct ifreq *ifr, int cmd);

 int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);

 int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);

 void (*ndo_tx_timeout) (struct net_device *dev);

 struct net_device_stats* (*ndo_get_stats)(

 struct net_device *dev);

};

Network Interface Card Drivers

[520]

Let us see what the meaning of each element in the structure is:

int (*ndo_init)(struct net_device *dev) and
void(*ndo_uninit)(struct net_device *dev); They are extra
initialization/unitialization functions, respectively executed when the driver calls
register_netdev()/unregister_netdev() in order to register/unregister the
network device with the kernel. Most drivers do not provide those functions,
since the real job is done by ndo_open() and ndo_stop() functions.
int (*ndo_open)(struct net_device *dev); Prepares and opens the
interface. The interface is opened whenever ip or ifconfig utilities activate it. In
this method, the driver should request/map/register any system resource it needs
(I/O ports, IRQ, DMA, and so on), turn on the hardware, and perform any other
setup the device requires.
int (*ndo_stop)(struct net_device *dev):The kernel executes this
function when the interface is brought down (For example, ifconfig <name>
down and so on). This function should perform reverse operations of what has
been done in ndo_open().
int (*ndo_start_xmit) (struct sk_buff *skb, struct net_device

*dev): This method is called whenever the kernel wants to send a packet
through this interface.
void (*ndo_set_rx_mode)(struct net_device *dev): This method is
called to change the interface address list filter mode, multicast or promiscuous.
It is recommended to provide this function.
void (*ndo_tx_timeout)(struct net_device *dev): The kernel calls this
method when a packet transmission fails to complete within a reasonable period,
usually for dev->watchdog ticks. The driver should check what happened,
handle the problem, and resume packet transmission.
struct net_device_stats *(*get_stats)(struct net_device *dev):
This method returns the device statistic. It is what one can see when netstat -i
or ifconfig is run.

The preceding descriptions miss a lot of fields. The complete structure description is
available in the include/linux/netdevice.h file. Actually, only ndo_start_xmit is
mandatory, but it is a good practice to provide as many helper hooks as your device has
features.

Network Interface Card Drivers

[521]

Opening and closing
The ndo_open() function is called by the kernel whenever this network interface is
configured by authorized users (admin for example) who make use of any user space
utilities like ifconfig or ip.

Like other network device operations, the ndo_open() function receives a struct
net_device object as its parameter, from which the driver should get the device-specific
object stored in the priv field at the time of allocating the net_device object.

The network controller usually raises an interrupt whenever it receives or completes a
packet transmission. The driver needs to register an interrupt handler that will be called
whenever the controller raises an interrupt. The driver can register the interrupt handler
either in the init()/probe() routine or in the open function. Some devices need the
interrupt to be enabled by setting this in a special register in the hardware. In this case, one
can request the interrupt in the probe function and just set/clear the enable bit in the
open/close method.

Let us summarize what the open function should do:

Update the interface MAC address (in case the user changed it and if your device1.
allows this).
Reset the hardware if necessary, and take it out of the low-power mode.2.
Request any resources (I/O memory, DMA channels, IRQ).3.
Map IRQ and register interrupt handlers.4.
Check the interface link status.5.
Call net_if_start_queue() on the device in order to let the kernel know that6.
your device is ready to transmit packets.

An example of open function is follows:

/*

 * This routine should set everything up new at each open, even

 * registers that should only need to be set once at boot, so that

 * there is non-reboot way to recover if something goes wrong.

 */

static int enc28j60_net_open(struct net_device *dev)

{

 struct priv_net_struct *priv = netdev_priv(dev);

 if (!is_valid_ether_addr(dev->dev_addr)) {

 [...] /* Maybe print a debug message ? */

 return -EADDRNOTAVAIL;

Network Interface Card Drivers

[522]

 }

 /*

 * Reset the hardware here and take it out of low

 * power mode

 */

 my_netdev_lowpower(priv, false);

 if (!my_netdev_hw_init(priv)) {

 [...] /* handle hardware reset failure */

 return -EINVAL;

 }

 /* Update the MAC address (in case user has changed it)

 * The new address is stored in netdev->dev_addr field

 */

set_hw_macaddr_registers(netdev, MAC_REGADDR_START,

netdev->addr_len, netdev->dev_addr);

 /* Enable interrupts */

 my_netdev_hw_enable(priv);

 /* We are now ready to accept transmit requests from

 * the queueing layer of the networking.

 */

 netif_start_queue(dev);

 return 0;

}

netif_start_queue() simply allows upper layers to call the device ndo_start_xmit
routine. In other words, it informs the kernel that the device is ready to handle transmit
requests.

The closing method on the other side just has to do the reverse of the operations done when
the device was opened:

/* The inverse routine to net_open(). */

static int enc28j60_net_close(struct net_device *dev)

{

 struct priv_net_struct *priv = netdev_priv(dev);

 my_netdev_hw_disable(priv);

 my_netdev_lowpower(priv, true);

 /**

 * netif_stop_queue - stop transmitted packets

 *

 * Stop upper layers calling the device ndo_start_xmit routine.

Network Interface Card Drivers

[523]

 * Used for flow control when transmit resources are unavailable.

 */

 netif_stop_queue(dev);

 return 0;

}

netif_stop_queue() simply does the reverse of netif_start_queue(), telling the
kernel to stop calling the device ndo_start_xmit routine. We can't handle transmit
request anymore.

Packet handling
Packet handling consists of transmission and reception of packets. This is the main task of
any network interface driver. Transmission refers only to sending outgoing frames, whereas
reception refers to frames coming in.

There are two ways to drive networking data exchange: by polling or by interrupt. Polling,
which is a kind of timer-driven interrupt, consists of a kernel continuously checking at
given intervals for any change from the device. On the other hand, interrupt mode consists
of the kernel doing nothing, listening to an IRQ line, and waiting for the device to notify a
change, by means of the IRQ. Interrupt-driven data exchange can increase system overhead
during time of high traffic. That is why some drivers mix the two methods. The part of the
kernel that allows mixing of the two methods is called New API (NAPI), which consists of
using polling during times of high traffic and using interrupt IRQ-driven management
when the traffic becomes normal. New drivers should use NAPI if the hardware can
support it. However, NAPI is not discussed in this chapter, which will focus on the
interrupt-driven method.

Packet reception
When a packet arrives into the network interface card, the driver must build a new socket
buffer around it, and copy the packet into the sk_ff->data field. The kind of copy does
not really matter, and DMA can be used too. The driver is generally aware of new data
arrivals by means of interrupts. When the NIC receives a packet, it raises an interrupt,
which will be handled by the driver, which has to check the interrupt status register of the
device and check the real reason why this interrupt was raised (in could be RX ok, RX error,
and so on). Bit(s) that correspond to the event that raised the interrupt will be set in the
status register.

Network Interface Card Drivers

[524]

The tricky part will be in allocating and building the socket buffer. But fortunately, we
already discussed that in the first section of this chapter. So let's not waste time and let's
jump to a sample RX handler. The driver has to perform as many sk_buff allocations as
the number of packets it received:

/*

 * RX handler

 * This function is called in the work responsible of packet

 * reception (bottom half) handler. We use work because access to

 * our device (which sit on a SPI bus) may sleep

 */

static int my_rx_interrupt(struct net_device *ndev)

{

 struct priv_net_struct *priv = netdev_priv(ndev);

 int pk_counter, ret;

 /* Let's get the number of packet our device received */

 pk_counter = my_device_reg_read(priv, REG_PKT_CNT);

 if (pk_counter > priv->max_pk_counter) {

 /* update statistics */

 priv->max_pk_counter = pk_counter;

 }

 ret = pk_counter;

 /* set receive buffer start */

 priv->next_pk_ptr = KNOWN_START_REGISTER;

 while (pk_counter-- > 0)

 /*

* By calling this internal helper function in a "while"

* loop, packets get extracted one by one from the device

* and forwarder to the network layer.

*/

 my_hw_rx(ndev);

 return ret;

}

The following helper is responsible for getting one packet from the device, forwarding it to
the kernel network, and decrementing the packet counter:

/*

 * Hardware receive function.

 * Read the buffer memory, update the FIFO pointer to

 * free the buffer.

 * This function decrements the packet counter.

 */

static void my_hw_rx(struct net_device *ndev)

Network Interface Card Drivers

[525]

{

 struct priv_net_struct *priv = netdev_priv(ndev);

 struct sk_buff *skb = NULL;

 u16 erxrdpt, next_packet, rxstat;

 u8 rsv[RSV_SIZE];

 int packet_len;

 packet_len = my_device_read_current_packet_size();

 /* Can't cross boundaries */

 if ((priv->next_pk_ptr > RXEND_INIT)) {

 /* packet address corrupted: reset RX logic */

 [...]

 /* Update RX errors stats */

 ndev->stats.rx_errors++;

 return;

 }

 /* Read next packet pointer and rx status vector

 * This is device-specific

 */

 my_device_reg_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);

 /* Check for errors in the device RX status reg,

 * and update error stats accordingly

 */

 if(an_error_is_detected_in_device_status_registers())

 /* Depending on the error,

 * stats.rx_errors++;

 * ndev->stats.rx_crc_errors++;

 * ndev->stats.rx_frame_errors++;

 * ndev->stats.rx_over_errors++;

 */

 } else {

 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN);

 if (!skb) {

 ndev->stats.rx_dropped++;

 } else {

 skb_reserve(skb, NET_IP_ALIGN);

 /*

 * copy the packet from the device' receive buffer

 * to the socket buffer data memory.

 * Remember skb_put() return a pointer to the

 * beginning of data region.

 */

 my_netdev_mem_read(priv,

 rx_packet_start(priv->next_pk_ptr),

 len, skb_put(skb, len));

 /* Set the packet's protocol ID */

 skb->protocol = eth_type_trans(skb, ndev);

Network Interface Card Drivers

[526]

 /* update RX statistics */

 ndev->stats.rx_packets++;

 ndev->stats.rx_bytes += len;

 /* Submit socket buffer to the network layer */

 netif_rx_ni(skb);

 }

 }

 /* Move the RX read pointer to the start of the next

 * received packet.

 */

 priv->next_pk_ptr = my_netdev_update_reg_next_pkt();

}

Of course the only reason we call the RX handler from within a deferred work is because we
sit on an SPI bus. All of the preceding operations could be performed from within the hwriq
in case of an MMIO device. Have a look at the NXP FEC driver, in
drivers/net/ethernet/freescale/fec.c to see how this is achieved.

Packet transmission
When the kernel needs to send packets out of the interface, it calls the driver's
ndo_start_xmit method, which should return NETDEV_TX_OK on success, or
NETDEV_TX_BUSY on failure, and in this case you can't do anything to the socket buffer
since it is still owned by the network queuing layer when the error is returned. This means
you cannot modify any SKB fields, or free the SKB, and so on. This function is protected
from the concurrent call by a spinlock.

Packet transmission is done asynchronously in most cases. The sk_buff of the transmitted
packet is filled by the upper layers. Its data field contains packets to be sent. Drivers should
extract packet from sk_buff->data and write it into the device hardware FIFO, or put it
into a temporary TX buffer (if the device needs a certain size of data before sending it)
before writing it into the device hardware FIFO. Data is really only sent once the FIFO
reaches a threshold value (usually defined by the driver, or provided in a device datasheet)
or when the driver intentionally starts the transmission, by setting a bit (a kind of trigger) in
a special register of the device. That being said, the driver needs to inform the kernel not to
start any transmissions until the hardware is ready to accept new data. This notification is
done by means of the netif_stop_queue() function.

void netif_stop_queue(struct net_device *dev)

Network Interface Card Drivers

[527]

After sending the packet, the network interface card will raise an interrupt. The interrupt
handler should check why the interrupt has occurred. In case of transmission interrupt, it
should update its statistics (net_device->stats.tx_errors and
net_device->stats.tx_packets), and notify the kernel that the device is free for
sending new packets. This notification is done by means of netif_wake_queue():

void netif_wake_queue(struct net_device *dev)

To summarize, packet transmission is split into two parts:

ndo_start_xmit operation, which notifies the kernel that the device is busy, set
up everything, and starts the transfer.
The TX interrupt handler, which updates TX statistics and notifies the kernel that
the device is available again.

The ndo_start_xmit function must roughly contain the following steps:

Call netif_stop_queue() on the network device in order to inform the kernel1.
that the device will be busy in data transmission.
Write sk_buff->data content into the device FIFO.2.
Trigger the transmission (instruct the device to start transmission).3.

Operations (2) and (3) may lead to sleep for devices sitting on slow buses
(SPI for example) and may need to be deferred to the work structure. This
is the case for our sample.

Once the packet is transferred, the TX interrupt handler should perform the following steps:

Depending on the device being memory mapped or sitting on a bus whose access4.
functions may sleep, the following operations should be performed directly in the
hwirq handler or scheduled in a work (or threaded IRQ):

1. Check if the interrupt is a transmission interrupt.

2. Read the transmission descriptor status register and see what the status of
the packet is.

3. Increment error statistics if there are any problems in the transmission.

4. Increment statistics of successful transmitted packets.

Network Interface Card Drivers

[528]

Start the transmission queue allowing the kernel to call the driver's5.
ndo_start_xmit method again, by means of the netif_wake_queue()
function.

Let us summarize in a short sample code:

/* Somewhere in the code */

INIT_WORK(&priv->tx_work, my_netdev_hw_tx);

static netdev_tx_t my_netdev_start_xmit(struct sk_buff *skb,

 struct net_device *dev)

{

 struct priv_net_struct *priv = netdev_priv(dev);

 /* Notify the kernel our device will be busy */

 netif_stop_queue(dev);

 /* Remember the skb for deferred processing */

 priv->tx_skb = skb;

 /* This work will copy data from sk_buffer->data to

 * the hardware's FIFO and start transmission

 */

 schedule_work(&priv->tx_work);

 /* Everything is OK */

 return NETDEV_TX_OK;

}

The work is described below:

/*

 * Hardware transmit function.

 * Fill the buffer memory and send the contents of the

 * transmit buffer onto the network

 */

static void my_netdev_hw_tx(struct priv_net_struct *priv)

{

 /* Write packet to hardware device TX buffer memory */

 my_netdev_packet_write(priv, priv->tx_skb->len,

priv->tx_skb->data);

/*

 * does this network device support write-verify?

 * Perform it

 */

[...];

 /* set TX request flag,

Network Interface Card Drivers

[529]

 * so that the hardware can perform transmission.

 * This is device-specific

 */

 my_netdev_reg_bitset(priv, ECON1, ECON1_TXRTS);

}

TX interrupt management will be discussed in the next section.

Driver example
We can summarize the concepts discussed above in the following fake Ethernet driver:

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/errno.h>

#include <linux/init.h>

#include <linux/netdevice.h>

#include <linux/etherdevice.h>

#include <linux/ethtool.h>

#include <linux/skbuff.h>

#include <linux/slab.h>

#include <linux/of.h> /* For DT*/

#include <linux/platform_device.h> /* For platform devices */

struct eth_struct {

 int bar;

 int foo;

 struct net_device *dummy_ndev;

};

static int fake_eth_open(struct net_device *dev) {

 printk("fake_eth_open called\n");

 /* We are now ready to accept transmit requests from

 * the queueing layer of the networking.

 */

 netif_start_queue(dev);

 return 0;

}

static int fake_eth_release(struct net_device *dev) {

 pr_info("fake_eth_release called\n");

 netif_stop_queue(dev);

 return 0;

}

Network Interface Card Drivers

[530]

static int fake_eth_xmit(struct sk_buff *skb, struct net_device *ndev) {

 pr_info("dummy xmit called...\n");

 ndev->stats.tx_bytes += skb->len;

 ndev->stats.tx_packets++;

 skb_tx_timestamp(skb);

 dev_kfree_skb(skb);

 return NETDEV_TX_OK;

}

static int fake_eth_init(struct net_device *dev)

{

 pr_info("fake eth device initialized\n");

 return 0;

};

static const struct net_device_ops my_netdev_ops = {

 .ndo_init = fake_eth_init,

 .ndo_open = fake_eth_open,

 .ndo_stop = fake_eth_release,

 .ndo_start_xmit = fake_eth_xmit,

 .ndo_validate_addr = eth_validate_addr,

 .ndo_validate_addr = eth_validate_addr,

};

static const struct of_device_id fake_eth_dt_ids[] = {

 { .compatible = "packt,fake-eth", },

 { /* sentinel */ }

};

static int fake_eth_probe(struct platform_device *pdev)

{

 int ret;

 struct eth_struct *priv;

 struct net_device *dummy_ndev;

 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);

 if (!priv)

 return -ENOMEM;

 dummy_ndev = alloc_etherdev(sizeof(struct eth_struct));

 dummy_ndev->if_port = IF_PORT_10BASET;

 dummy_ndev->netdev_ops = &my_netdev_ops;

 /* If needed, dev->ethtool_ops = &fake_ethtool_ops; */

Network Interface Card Drivers

[531]

 ret = register_netdev(dummy_ndev);

 if(ret) {

 pr_info("dummy net dev: Error %d initalizing card ...", ret);

 return ret;

 }

 priv->dummy_ndev = dummy_ndev;

 platform_set_drvdata(pdev, priv);

 return 0;

}

static int fake_eth_remove(struct platform_device *pdev)

{

 struct eth_struct *priv;

 priv = platform_get_drvdata(pdev);

 pr_info("Cleaning Up the Module\n");

 unregister_netdev(priv->dummy_ndev);

 free_netdev(priv->dummy_ndev);

 return 0;

}

static struct platform_driver mypdrv = {

 .probe = fake_eth_probe,

 .remove = fake_eth_remove,

 .driver = {

 .name = "fake-eth",

 .of_match_table = of_match_ptr(fake_eth_dt_ids),

 .owner = THIS_MODULE,

 },

};

module_platform_driver(mypdrv);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("John Madieu <john.madieu@gmail.com>");

MODULE_DESCRIPTION("Fake Ethernet driver");

Once the module is loaded and a device matched, an Ethernet interface will be created on
the system. First, let us see what the dmesg command shows us:

dmesg
[...]
[146698.060074] fake eth device initialized
[146698.087297] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready

Network Interface Card Drivers

[532]

If one runs the ifconfig -a command, the interface will be printed on the screen:

ifconfig -a
[...]
eth0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

One can finally configure the interface, assigning an IP address, so that it can be shown by
using ifconfig:

ifconfig eth0 192.168.1.45
ifconfig
[...]
eth0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
inet addr:192.168.1.45 Bcast:192.168.1.255 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Status and control
Device control refers to a situation where the kernel needs to change properties of the
interface on its own initiative, or in response to a user action. It can then use either
operations exposed through the struct net_device_ops structure, as discussed, or use
another control tool, ethtool, which requires the driver to introduce a new set of hooks that
we will discuss in the next section. Conversely, status consists of reporting the state of the
interface.

The interrupt handler
So far, we have only dealt with two different interrupts: when a new packet has arrived or
when the transmission of an outgoing packet is complete; but now-a-days hardware
interfaces are becoming smart, and they able to report their status either for sanity
purposes, or for data transfer purposes. This way, network interfaces can also generate
interrupts to signal errors, link status changes, and so on. They should all be handled in the
interrupt handler.

Network Interface Card Drivers

[533]

This is what our hwrirq handler looks like:

static irqreturn_t my_netdev_irq(int irq, void *dev_id)

{

 struct priv_net_struct *priv = dev_id;

 /*

 * Can't do anything in interrupt context because we need to

 * block (spi_sync() is blocking) so fire of the interrupt

 * handling workqueue.

 * Remember, we access our netdev registers through SPI bus

 * via spi_sync() call.

 */

 schedule_work(&priv->irq_work);

 return IRQ_HANDLED;

}

Because our device sits on an SPI bus, everything is deferred into a work_struct, which is
defined as follows:

static void my_netdev_irq_work_handler(struct work_struct *work)

{

 struct priv_net_struct *priv =

 container_of(work, struct priv_net_struct, irq_work);

 struct net_device *ndev = priv->netdev;

 int intflags, loop;

 /* disable further interrupts */

 my_netdev_reg_bitclear(priv, EIE, EIE_INTIE);

 do {

 loop = 0;

 intflags = my_netdev_regb_read(priv, EIR);

 /* DMA interrupt handler (not currently used) */

 if ((intflags & EIR_DMAIF) != 0) {

 loop++;

 handle_dma_complete();

 clear_dma_interrupt_flag();

 }

 /* LINK changed handler */

 if ((intflags & EIR_LINKIF) != 0) {

 loop++;

 my_netdev_check_link_status(ndev);

 clear_link_interrupt_flag();

 }

 /* TX complete handler */

 if ((intflags & EIR_TXIF) != 0) {

Network Interface Card Drivers

[534]

 bool err = false;

 loop++;

 priv->tx_retry_count = 0;

 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT)

 clear_tx_interrupt_flag();

 /* TX Error handler */

 if ((intflags & EIR_TXERIF) != 0) {

 loop++;

 /*

 * Reset TX logic by setting/clearing appropriate

 * bit in the right register

 */

 [...]

 /* Transmit Late collision check for retransmit */

 if (my_netdev_cpllision_bit_set())

 /* Handlecollision */

 [...]

 }

 /* RX Error handler */

 if ((intflags & EIR_RXERIF) != 0) {

 loop++;

 /* Check free FIFO space to flag RX overrun */

 [...]

 }

 /* RX handler */

 if (my_rx_interrupt(ndev))

 loop++;

 } while (loop);

 /* re-enable interrupts */

 my_netdev_reg_bitset(priv, EIE, EIE_INTIE);

}

Ethtool support
Ethtool is a small utility for examining and tuning the settings of Ethernet-based network
interfaces. With ethtool, it is possible to control various parameters like:

Speed
Media type
Duplex operation
Get/set eeprom register content
Hardware check summing
Wake-on-LAN, and so on.

Network Interface Card Drivers

[535]

Drivers that need support from ethtool should include <linux/ethtool.h>. It relies on
the struct ethtool_ops structure which is the core of this feature, and contains a set of
methods for ethtool operations support. Most of these methods are relatively
straightforward; see include/linux/ethtool.h for the details.

For ethtool support to be fully part of the driver, the driver should fill an ethtool_ops
structure and assign it to the .ethtool_ops field of the struct net_device structure.

my_netdev->ethtool_ops = &my_ethtool_ops;

The macro SET_ETHTOOL_OPS can be used for this purpose too. Do note that your ethtool
methods can be called even when the interface is down.

For example, the following drivers implement ethtool support:

drivers/net/ethernet/microchip/enc28j60.c

drivers/net/ethernet/freescale/fec.c

drivers/net/usb/rtl8150.c

Driver methods
Driver methods are the probe() and remove() functions. They are responsible for
(un)registering the network device with the kernel. The driver has to provide its
functionalities to the kernel through the device methods by means of the struct
net_device structure. These are the operations that can be performed on the network
interface:

static const struct net_device_ops my_netdev_ops = {

 .ndo_open = my_netdev_open,

 .ndo_stop = my_netdev_close,

 .ndo_start_xmit = my_netdev_start_xmit,

 .ndo_set_rx_mode = my_netdev_set_multicast_list,

 .ndo_set_mac_address = my_netdev_set_mac_address,

 .ndo_tx_timeout = my_netdev_tx_timeout,

 .ndo_change_mtu = eth_change_mtu,

 .ndo_validate_addr = eth_validate_addr,

};

The preceding are the operations that most drivers implement.

Network Interface Card Drivers

[536]

The probe function
The probe function is quite basic, and only needs to perform a device's early init, and
then register our network device with the kernel.

In other words, the probe function has to:

Allocate the network device along with its private data using the1.
alloc_etherdev() function (helped by netdev_priv()).
Initialize private data fields (mutexes, spinlock, work_queue, and so on). One2.
should use work queues (and mutexes) in case the device sits on a bus whose
access functions may sleep (SPI for example). In this case, the hwirq just has to
acknowledge the kernel code, and schedule the work that will perform
operations on the device. The alternative solution is to use threaded IRQs. If the
device is MMIO, one can use spinlock to protect critical sections and get rid of
work queues.
Initialize bus-specific parameters and functionalities (SPI, USB, PCI, and so on).3.
Request and map resources (I/O memory, DMA channel, IRQ).4.
If necessary, generate a random MAC address and assign it to the device.5.
Fill the mandatories (or useful) netdev properties: if_port, irq, netdev_ops,6.
ethtool_ops, and so on.
Put the device into the low-power state (the open() function will remove it from7.
this mode).
Finally, call register_netdev() on the device.8.

With an SPI network device, the probe function can look like this:

static int my_netdev_probe(struct spi_device *spi)

{

 struct net_device *dev;

 struct priv_net_struct *priv;

 int ret = 0;

 /* Allocate network interface */

 dev = alloc_etherdev(sizeof(struct priv_net_struct));

 if (!dev)

 [...] /* handle -ENOMEM error */

 /* Private data */

 priv = netdev_priv(dev);

 /* set private data and bus-specific parameter */

 [...]

Network Interface Card Drivers

[537]

 /* Initialize some works */

 INIT_WORK(&priv->tx_work, data_tx_work_handler);

 [...]

 /* Devicerealy init, only few things */

 if (!my_netdev_chipset_init(dev))

 [...] /* handle -EIO error */

 /* Generate and assign random MAC address to the device */

 eth_hw_addr_random(dev);

 my_netdev_set_hw_macaddr(dev);

 /* Board setup must set the relevant edge trigger type;

 * level triggers won't currently work.

 */

 ret = request_irq(spi->irq, my_netdev_irq, 0, DRV_NAME, priv);

 if (ret < 0)

 [...]; /* Handle irq request failure */

 /* Fill some netdev mandatory or useful properties */

 dev->if_port = IF_PORT_10BASET;

 dev->irq = spi->irq;

 dev->netdev_ops = &my_netdev_ops;

 dev->ethtool_ops = &my_ethtool_ops;

 /* Put device into sleep mode */

 My_netdev_lowpower(priv, true);

 /* Register our device with the kernel */

 if (register_netdev(dev))

 [...]; /* Handle registration failure error */

 dev_info(&dev->dev, DRV_NAME " driver registered\n");

 return 0;

}

This whole chapter is heavily inspired by the enc28j60 from Microchip.
You may have a look into its code in
drivers/net/ethernet/microchip/enc28j60.c.

The register_netdev() function takes a completed struct net_device object and
adds it to the kernel interfaces; 0 is returned on success and a negative error code is
returned on failure. The struct net_device object should be stored in your bus device
structure so that it can be accessed later. That being said, if your net device is part of a
global private structure, it is that structure that you should register.

Network Interface Card Drivers

[538]

Do note that the duplicate device name may lead to registration failure.

Module unloading
This is the cleaning function, which relies on two functions. Our driver release function
could look like this:

static int my_netdev_remove(struct spi_device *spi)

{

 struct priv_net_struct *priv = spi_get_drvdata(spi);

 unregister_netdev(priv->netdev);

 free_irq(spi->irq, priv);

 free_netdev(priv->netdev);

 return 0;

}

The unregister_netdev() function removes the interface from the system, and the kernel
can no longer call its methods; free_netdev() frees the memory used by the struct
net_device structure itself along with the memory allocated for private data, as well as
any internally allocated memory related to the network device. Do note that you should
never free netdev->priv by yourself.

Summary
This chapter has explained everything needed to write an NIC device driver. Even if the
chapter relies on a network interface sitting on an SPI bus, the principle is the same for USB
or PCI network interfaces. One can also use the dummy driver provided for testing
purposes. After this chapter, it is obvious NIC drivers will no longer be mystery to you.

Index

A
ACPI match 132
analogic to digitals converters (ADC) 218
application-specific data
 Boolean 151
 cells 150
 extracting 149
 parsing 151
 sub-nodes, extracting 151
 text strings 149
 unsigned 32-bit integers 150
architecture, I2C client drivers
 about 165
 i2c_driver structure 165
architecture, SPI device drivers
 about 180
 initialization and registration 185
 provisioning 186
 spi_driver structure 183
 structure 180
attributes, sysfs files
 bus attributes 355
 class attributes 357
 device attributes 353
 device drivers attributes 356
 polling, enabling 358
attributes
 about 348
 group 349

B
bits 242
block started by symbol (bss) 25
BMA220
 about 244, 249
 reference 244

bottom halves
 about 83
 as solution 83
 interrupt handler design limitations issue 83
 softirqs, using as 86
 tasklets, using as 84
 workqueue, using as 85
buddies 278
buffer data access
 about 251
 capturing, using sysfs trigger 251
buffer support
 triggering 234, 237
bus matching 128

C
cache 300
caching algorithm
 write back cache 304
 write-aroundcache 303
 write-throughcache 303
chaining IRQ
 about 411
 chained interrupts 411
 nested interrupts 412
channel
 distinguishing 229
character device
 about 92
 allocating 97
 registering 97
Chip Select (CS) 179
coherent mapping 309
coherent systems 308
completion 314, 315
container_of macro 44, 46
content-addressable memory (CAM) 272

[540]

copy-on-write (CoW) case 289
CPU cache (memory caching)
 L1 cache 301
 L2 cache 301
 L3 cache 301
Cyclic Redundancy Code (CRC) 10

D
data structures, Linux Device Model (LDM)
 bus 333, 334, 337
 bus registration 338
 device driver 339
 device driver registration 340
 Kobject structure 343
 struct device 341
 struct device registration 342
data structures, Network Interface Card (NIC) driver
 socket buffer structure 514
data structures, producer driver
 configuration structure 477
 constraints structure 472
 description structures 471
 device operation structure 477
 init data structure 473
data writing delay, to disks
 reasons 302
 write caching strategies 303
dedicated work queue
 about 75
 programming syntax 75
descriptor-based GPIO interface
 GPIO descriptor mapping 373
 GPIO, allocating 374
 GPIO, using 375
 summarizing 377
device access functions, regmap
 other functions 212
 regmap_multi_reg_write function 211
 regmap_update_bits function 210
device file operations
 about 94
 file representation, in kernel 95
device methods, Network Interface Card (NIC)

driver
 open function 521

 packet, handling 523
device model
 and sysfs 350
device number
 allocating 93
 allocating dynamically 93
 allocating statically 93
device provisioning
 new method 127
 old method 122
 platform data 125
 resources 123, 124
Device Tree (DT) mechanism
 about 137
 aliases 139
 compiler 140
 labels 139
 naming convention 138
 OF match style 152
 pointer handle (phandle) 139
 reference 137
device tree compiler (dtc) 140
devices
 about 128
 addressing 141
 platform device addressing 143
 representing 141
 SPI and I2C addressing 141
devres 304
digital to analogic converters (DAC) 218
Direct Memory Access (DMA) 192
DMA DT binding
 about 329
 consumer binding 329, 330
DMA engine AP
 slave and controller specific parameters, setting

318

DMA engine API
 about 316
 callback notification, waiting 323
 descriptor, obtaining for transaction 321
 DMA slave channel, allocating 317
 pending DMA requests, issuing 323
 slave and controller specific parameters, setting

320

[541]

 transaction, submitting 322
DMA mappings
 about 309
 coherent mappings 309
 setting up 308
 streaming DMA mappings 309
DMA
 about 307
 and cache coherency 308
driver
 about 128
 examples 433, 435, 439
dynamic tick kernel
 about 61
 atomic context 61
 delays 61
 nonatomic context 62
 sleep 61

E
end of interrupt (eoi) 400
environment setup, Linux
 about 9
 kernel configuration 11
 kernel, building 12
error codes
 printing 29
error
 handling 29
 null pointer errors, handling 32
exceptions
 about 396
 processor-detected exception 396
 programmed exception 396
Executable and Linkable Format (ELF) 24

F
fb_ops structure
 about 504
 accelerated methods 508
 controller's parameters, setting 506
 information, checking 505
 screen blanking 507
file operations
 file_operations structure, filling 116

 ioctl method 112
 llseek method 106
 open method 100
 poll method 108
 read method 104
 release method 101
 structure, filling 116
 write method 102
 writing 98
flusher threads 304
framebuffer drivers
 data structures 496, 500
 device methods 500, 502
 intelfb 495
 methods 502
 mxcfb 495
 vesafb 495
 writing 509
framebuffer
 using, from user space 509

G
General Purpose Input Output (GPIO) 361
Global Interrupt Controller (GIC) 147
GPIO and IRQ chip 412, 414
GPIO controller driver
 architecture 388
 data structures 388
GPIO controllers
 and DT 394
GPIO interface
 legacy integer-based interface, and device tree

380

 mapping, to IRQ in device tree 383
GPIO subsystem
 about 366
 descriptor-based GPIO interface 372
 GPIO interface, and device tree 379
 integer-based GPIO interface 367
GPIO
 exporting, from kernel 386
gpiolib irqchip API 415

[542]

H
hard fault 288
hardware clock (hwclock) utility 453
heap memory allocation
 reference 284
helloworld module
 __init attribute 23
 _exit attribute 23
 about 22
 authors 28
 describing 29
 entry and exit point 23
 information 25
 licensing 27
high resolution timers (HRTs)
 about 59
 HRT API 59
 setup initialization 59
hrtimer trigger interface 240

I
I/O memory
 __iomem cookie 292
 Memory Mapped Input Output (MMIO) 290
 MMIO devices access 291
 PIO devices access 290
 through I/O ports 290
 working with 290
I2C client drivers, accessing
 I2C devices, instantiating in board configuration

file 173
 plain I2C communication 170
 System Management Bus (SMBus) compatible

functions, using 172
I2C client drivers
 accessing 170
 device, provisioning 169
 initialization and registration 169
 writing, steps 177
I2C devices
 instantiating, in device tree 177
I2C driver
 defining 175
 kernel version 176

 registering 175
I2C specification
 reference 165
I2C
 and device tree 174
i2c_driver structure, I2C client drivers
 probe() function 166
 remove() function 168
i2c_driver structure
 about 165
 probe () function, per-device data 167
ID table matching
 about 132, 134
 per device-specific data 134
IIO buffer
 about 241
 setup 242, 243
 sysfs interface 241
IIO channels
 channel attribute naming conventions 227
IIO data access
 about 250
 buffer data access 251
 hrtimer trigger, used for capturing 253
 one-shot capture 251
IIO data structures
 about 220
 IIO channels 225
 iio_dev structure 220, 223
 iio_info structure 224
 voltage channels 231
IIO tools 254
IIO trigger
 and sysfs (user space) 238
Industrial I/O (IIO) 218
init data structure
 elements 473
 init data, feeding in board file 474
 init data, feeding in DT 475
input device
 allocating 422
 drivers, writing 431
 polled input devices, sub-class 423, 426
 registering 422
 structures 419, 422

[543]

input event
 generating 427, 429
 reporting 427, 429
input/output control(ioctl) commands 197
 about 112
 reference 114
integer-based GPIO interface
 about 367
 accessing 368
 configuring 367
 GPIOs, mapped to IRQ 369
 modifying 367
 value, getting/setting 368
Inter-Process Communication (IPC) 10
interrupt controller code property 148
interrupt controller
 and DT 417
 multiplexing 398, 407
interrupt handler
 about 147
 registering 80
 using, with lock 82
interrupt requests 410
interrupt trigger interface 239
interrupts
 about 396
 multiplexing 398, 407
 propagation 410
ioctl method
 about 112
 implementing, steps 114
 used, for generating ioctl numbers 113

K
kernel addresses
 high memory 259, 260
 low memory 260
kernel interruption mechanism
 about 79
 bottom halves 83
 interrupt handler, registering 79
kernel locking mechanism
 about 62
 mutual exclusion (mutex) 63
 spinlock 65

kernel memory, mapping to user space
 io_remap_pfn_range, using 297
 mmap file operation 297
 remap_pfn_range, using 295
kernel object (kobject)
 about 10
 structure 343
kernel object sets (ksets) 347
kernel object type 345
kernel sleeping mechanism
 about 52
 wait queue 52, 55
kernel space
 about 18, 257
 and data space, data exchange 98
 single value copy 99
kernel timers
 high resolution timers (HRTs) 59
 standard timers 56
kernel version
 reference 176
kernel
 about 13
 classes 15
 coding style 13
 objects 15
 OOP 15
 structures allocation/initialization 14
 user-space applications, invoking 89
ksoftirqd 86

L
legacy version 463
linked list
 about 47
 creating 48
 dynamic method, using 48
 initializing 48
 list node, adding 50
 list node, creating 49
 node, deleting 51
 static method, using 49
 traversal 51
linker definition file (LDF) 25
linker definition script (LDS) 25

[544]

Linux caching system 300
Linux Device Model (LDM)
 about 332
 attribute 348
 data structures 333
 exploring 343
 kernel object sets (ksets) 347
 Kobj_type 345
Linux graphical stack
 reference 496
Linux page cache (disk caching) 302
Linux PWM framework
 controller interface 455
Linux regulator 470
Linux
 about 8
 advantages 8
 environmental setup 9
 source organization 10
 sources, obtaining 9
llseek method
 about 106
 implementing, steps 107

M
major 92
manual loading
 insmod 20
 modprobe 20
mapping, kernel
 Advanced Configuration and Power Interface

mapping (ACPI) 373
 device tree 373
 platform data mapping 373
Master Input Slave Output (MISO) 179
Master Output Slave Input (MOSI) 179
match style mixing
 about 158
 platform resources 160
MCP23016 I2C I/O expander
 reference 391
memory (re)mapping
 about 294
 kernel memory, mapping to user space 295
 kmap 294

memory allocation mechanism
 about 274
 kmalloc family allocation 283
 page allocator 275
 processing, under hood 288
 reference 274
 slab allocator 278
 vmalloc allocator 286
Memory Management Unit (MMU)
 about 266
 address translation 266
message
 printing 29
 printing, with printk() 33
methods, framebuffer driver
 detailed fb_ops 504
methods, Network Interface Card (NIC) driver
 about 535
 module, unloading 538
 probe function 536
methods, producer driver
 about 478, 485, 489
 Intersil ISL6271A voltage regulator 480
 probe function 479
minor 92
mmap file
 implementing, in kernel 299
 operation 297
module
 about 19
 auto-loading 21
 building 37, 42
 building, in kernel tree 39, 42
 dependencies 19
 depmod utility 19
 external module, building 42
 file, creating 20
 loading 20
 makefile 37
 manual loading 20
 parameters 35
 unload 21
 unloading 20
most significant bits (MSBs) 271
mutual exclusion (mutex)

[545]

 about 63
 acquire and release 64
 declare 63
 mutex API 63

N
Network Interface Card (NIC) driver
 about 513
 close function 521
 control 532
 data structures 514
 device methods 519
 ethtool, using 534
 example 529, 532
 interrupt handler 532
 methods 535
 network interface structure 517, 519
 status 532
new and recommended API 463
New API (NAPI) 523
non-coherent systems 308
non-maskable interrupts (NMI) 396
NXP SDMA (i.MX6) 324, 327, 329

O
OF match style
 about 152, 153
 match style mixing 158
 multiple hardware, supporting with per device-

specific data 156
 non-device tree platforms, dealing with 155
OF style 132
Open Firmware (OF) 130
open method
 about 100
 per-device data 100
operations (ops) structure 15

P
packet
 handling 523
 reception 523, 526
 transmission 526, 529
page allocator
 about 275

 conversion function 277
 page allocation API 275
page fault 288
page frame number (PFN) 258
Page Global Directory (PGD) 269
page look up 272
Page Table (PTE) 270
page table base register (PTBR) 271
Page Upper Directory (PUD) 269
peripheral IRQs
 advanced management 407, 409
Pin control (pinctrl)
 about 361
 and device tree 362, 365, 366
pin controller
 guidelines 393
platform data
 versus DT 162
platform devices
 about 122
 and platform drivers match, in kernel 131
 and platform drivers, matching factors 130
 declaring 127
 device provisioning 122
 name matching 136
 platform data 122
 resources 122
platform drivers
 about 118, 119
 working, with DT 152
pointer handle (phandle) 139
poll method
 about 108
 implementing, steps 109
Port Input Output (PIO) 290
Power Management Integrated Circuit (PMIC) 470
private peripheral interrupt (PPI) 148
producer driver
 data structures 470
 interface 470
 methods 478
programmable interrupt timer (PIT) 56
programmed exception
 reference 396
publisher 358

[546]

Pulse Wide Modulation (PWM) consumer interface
 about 462
 clients binding 464
Pulse Wide Modulation (PWM)
 about 454
 consumer interface 462
 controller binding 461
 controller driver 456
 controller driver example 458
 reference 455
 using, with sysfs interface 466

R
read method
 about 104
 implementing, steps 105
real-time clock (RTC)
 about 55, 440
 and use space 451
 API 443
 framework data structures 441
regmap API
 about 203, 485
 device access functions 209
 regmap_config structure 204
 used, for programming 203
regmap
 caching mechanism 212
 example 214
 I2C initialization 208
 initializing 207
 SPI initialization 207
 subsystem, setting up 214
regmap_config structure 204
regulator 469
regulator device
 binding 493
 controlling 491
 current limit control 492
 operating mode control 493
 output, disabling 491
 output, enabling 491
 requesting 490
 status 492
 voltage control 492

regulators consumer interface 489
release method 101
request_threaded_irq() function
 @handler function 87
 @thread_fn function 87
resources
 application-specific data, extracting 149
 handling 144
 interrupts, handling 147
 named resources 145
 registers, accessing 146
RTC API
 about 443
 alarm, used for planning 448
 driver example 447
 time, setting 444
RTC framework data structures 441

S
Serial Clock (SCK) 179
Serial Clock (SCL) 164
Serial Data (SDA) 164
Serial Peripheral Interface (SPI) 148, 179
slab allocator
 about 278
 buddy algorithm 278
 exploring 281
slab states
 empty 281
 full 281
 partial 281
socket buffer structure
 about 514
 allocation 516
soft fault 288
software buffer structure
 allocation 517
Software IRQ (softirq)
 ksoftirqd 68
specialized caches (user space caching)
 libc (user-app cache) 302
 web browser cache 302
SPI device drivers
 accessing 191, 195
 and device tree 188

[547]

 architecture 180
 defining 190
 instantiating, in board configuration file 187
 instantiating, in device tree 190
 registering 190
 writing, steps 196
SPI user mode driver
 about 196
 with IOCTL 198, 199
spi_driver structure
 about 183
 probe() function 183
 probe() function, per-device data 184
 remove() function 185
spinlock
 about 65
 versus mutexes 67
standard timers
 HZ 56
 jiffies 56
 timers API 56
storagebits 242
streaming DMA mapping
 constraints 310
 scatter/gather mapping 311, 314
 single buffer mapping 311
subscriber 358
sysfs director 218
sysfs files
 and attributes 352
 current interfaces 353
sysfs GPIO interface 384
sysfs interface
 about 452
 using, with PWMs 466
sysfs trigger interface
 about 238
 add_trigger file 238
 device, tying with trigger 239
 remove_trigger file 239
system memory layout
 kernel space 257
 user space 257
system on chip (SoC) 9

T
tasklet
 about 69
 declaring 70
 disabling 70
 enabling 70
 scheduling 71
threaded IRQs
 about 86
 threaded bottom half 88
tickless kernel
 about 61
 atomic context 61
 delays 61
 nonatomic context 62
 sleep 61
timer management 55
timers API
 about 56
 setup initialization 57
 standard example 57
TLB miss event
 about 272
 hardware handling 272
 software handling 272
translation lookaside buffer (TLB)
 about 271
 working 272
Translation Table Base Register 0 (TTBR0) 271

U
user space addresses
 about 261
 VMA 264, 266
user space interface 429
user space
 about 19, 257
 and kernel space, data exchange 98
 framebuffer, using 509
user-space applications
 invoking, from kernel 89

V
virtual memory area (VMA) 263

W
work deferring mechanism
 about 67, 69, 70, 72
 kernel threads 79
 Software IRQ (softirq) 67

work queues
 about 72
 dedicated work queue 75
 kernel-global workqueue 72
 predefined (shared) workqueue 78
 standard workqueue functions 78
write method
 implementing, steps 102
writeback 300

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: Introduction to Kernel Development
	Environment setup
	Getting the sources
	Source organization

	Kernel configuration
	Build your kernel

	Kernel habits
	Coding style
	Kernel structures allocation/initialization
	Classes, objects, and OOP

	Summary

	Chapter 2: Device Driver Basis
	User space and kernel space
	The concept of modules
	Module dependencies
	depmod utility

	Module loading and unloading
	Manual loading
	modprobe and insmod
	/etc/modules-load.d/<filename>.conf

	Auto-loading
	Module unload

	Driver skeletons
	Module entry and exit point
	__init and __exit attributes

	Module information
	Licensing
	Module author(s)
	Module description

	Errors and message printing
	Error handling
	Handling null pointer errors
	Message printing – printk()

	Module parameters
	Building your first module
	The module's makefile
	In the kernel tree
	Out of the tree
	Building the module

	Summary

	Chapter 3: Kernel Facilities and Helper Functions
	Understanding container_of macro
	Linked lists
	Creating and initializing the list
	Dynamic method
	Static method

	Creating a list node
	Adding a list node
	Deleting a node from the list
	Linked list traversal

	Kernel sleeping mechanism
	Wait queue

	Delay and timer management
	Standard timers
	Jiffies and HZ
	Timers API
	Timer setup initialization
	Standard timer example

	High resolution timers (HRTs)
	HRT API
	HRT setup initialization

	Dynamic tick/tickless kernel
	Delays and sleep in the kernel
	Atomic context
	Nonatomic context

	Kernel locking mechanism
	Mutex
	Mutex API
	Declare
	Acquire and release

	Spinlock
	Spinlock versus mutexes

	Work deferring mechanism
	Softirqs and ksoftirqd
	ksoftirqd

	Tasklets
	Declaring a tasklet
	Enabling and disabling a tasklet

	Tasklet scheduling
	Work queues
	Kernel-global workqueue – the shared queue
	Dedicated work queue
	Programming syntax

	Predefined (shared) workqueue and standard workqueue functions

	Kernel threads

	Kernel interruption mechanism
	Registering an interrupt handler
	Interrupt handler and lock

	Concept of bottom halves
	The problem – interrupt handler design limitations
	The solution – bottom halves
	Tasklets as bottom halves
	Workqueue as bottom halves
	Softirqs as bottom half

	Threaded IRQs
	Threaded bottom half

	Invoking user-space applications from the kernel
	Summary

	Chapter 4: Character Device Drivers
	The concept behind major and minor
	Device number allocation and freeing

	Introduction to device file operations
	File representation in the kernel

	Allocating and registering a character device
	Writing file operations
	Exchanging data between kernel space and user space
	A single value copy

	The open method
	Per-device data

	The release method
	The write method
	Steps to write

	The read method
	Steps to read

	The llseek method
	Steps to llseek

	The poll method
	Steps to poll

	The ioctl method
	Generating ioctl numbers (command)
	Steps for ioctl

	Filling the file_operations structure

	Summary

	Chapter 5: Platform Device Drivers
	Platform drivers
	Platform devices
	Resources and platform data
	Device provisioning - the old and depreciated way
	Resources
	Platform data
	Where to declare platform devices?

	Device provisioning - the new and recommended way

	Devices, drivers, and bus matching
	How can platform devices and platform drivers match?
	Kernel devices and drivers-matching function
	OF style and ACPI match
	ID table matching
	Name matching - platform device name matching

	Summary

	Chapter 6: The Concept of Device Tree
	Device tree mechanism
	Naming convention
	Aliases, labels, and phandle
	DT compiler

	Representing and addressing devices
	SPI and I2C addressing
	Platform device addressing

	Handling resources
	Concept of named resources
	Accessing registers
	Handling interrupts
	The interrupt handler
	Interrupt controller code

	Extract application-specific data
	Text string
	Cells and unsigned 32-bit integers
	Boolean
	Extract and parse sub-nodes

	Platform drivers and DT
	OF match style
	Dealing with non-device tree platforms
	Support multiple hardware with per device-specific data

	Match style mixing
	Platform resources and DT

	Platform data versus DT

	Summary

	Chapter 7: I2C Client Drivers
	The driver architecture
	The i2c_driver structure
	The probe() function
	Per-device data

	The remove() function

	Driver initialization and registration
	Driver and device provisioning

	Accessing the client
	Plain I2C communication
	System Management Bus (SMBus) compatible functions
	Instantiating I2C devices in the board configuration file (old and depreciated way)

	I2C and the device tree
	Defining and registering the I2C driver
	Remark

	Instantiating I2C devices in the device tree - the new way
	Putting it all together

	Summary

	Chapter 8: SPI Device Drivers
	The driver architecture
	The device structure
	spi_driver structure
	The probe() function
	Per-device data

	The remove() function

	Driver initialization and registration
	Driver and devices provisioning
	Instantiate SPI devices in board configuration file – old and depreciated way
	SPI and device tree
	Instantiate SPI devices in device tree - the new way
	Define and register SPI driver

	Accessing and talking to the client
	Putting it all together
	SPI user mode driver
	With IOCTL

	Summary

	Chapter 9: Regmap API – A Register Map Abstraction
	Programming with the regmap API
	regmap_config structure
	regmap initialization
	SPI initialization
	I2C initialization

	Device access functions
	regmap_update_bits function
	Special regmap_multi_reg_write function
	Other device access functions

	regmap and cache
	Putting it all together
	A regmap example

	Summary

	Chapter 10: IIO Framework
	IIO data structures
	iio_dev structure
	iio_info structure
	IIO channels
	Channel attribute naming conventions
	Distinguishing channels

	Putting it all together

	Triggered buffer support
	IIO trigger and sysfs (user space)
	Sysfs trigger interface
	add_trigger file
	remove_trigger file
	Tying a device with a trigger

	The interrupt trigger interface
	The hrtimer trigger interface

	IIO buffers
	IIO buffer sysfs interface
	IIO buffer setup

	Putting it all together

	IIO data access
	One-shot capture
	Buffer data access
	Capturing using the sysfs trigger
	Capturing using the hrtimer trigger

	IIO tools
	Summary

	Chapter 11: Kernel Memory Management
	System memory layout - kernel space and user space
	Kernel addresses – concept of low and high memory
	Low memory
	High memory

	User space addresses
	Virtual Memory Area (VMA)

	Address translation and MMU
	Page look up and TLB
	How does TLB work

	Memory allocation mechanism
	Page allocator
	Page allocation API
	Conversion functions

	Slab allocator
	The buddy algorithm
	A journey into the slab allocator

	kmalloc family allocation
	vmalloc allocator
	Process memory allocation under the hood
	The copy-on-write (CoW) case

	Work with I/O memory to talk with hardware
	PIO devices access
	MMIO devices access
	__iomem cookie

	Memory (re)mapping
	kmap
	Mapping kernel memory to user space
	Using remap_pfn_range
	Using io_remap_pfn_range
	The mmap file operation
	Implementing mmap in the kernel

	Linux caching system
	What is a cache?
	CPU cache – memory caching
	The Linux page cache – disk caching
	Specialized caches (user space caching)

	Why delay writing data to disk?
	Write caching strategies
	The flusher threads

	Device-managed resources – Devres
	Summary

	Chapter 12: DMA – Direct Memory Access
	Setting up DMA mappings
	Cache coherency and DMA
	DMA mappings
	Coherent mapping
	Streaming DMA mapping
	Single buffer mapping
	Scatter/gather mapping

	Concept of completion
	DMA engine API
	Allocate a DMA slave channel
	Set slave and controller specific parameters
	Get a descriptor for transaction
	Submit the transaction
	Issue pending DMA requests and wait for callback notification

	Putting it all together – NXP SDMA (i.MX6)
	DMA DT binding
	Consumer binding

	Summary

	Chapter 13: Linux Device Model
	LDM data structures
	The bus
	Bus registration

	Device driver
	Device driver registration

	Device
	Device registration

	Deep inside LDM
	kobject structure
	kobj_type
	ksets
	Attribute
	Attributes group

	Device model and sysfs
	Sysfs files and attributes
	Current interfaces
	Device attributes
	Bus attributes
	Device drivers attributes
	Class attributes

	Allow sysfs attribute files to be pollable

	Summary

	Chapter 14: Pin Control and GPIO Subsystem
	Pin control subsystem
	Pinctrl and the device tree

	The GPIO subsystem
	The integer-based GPIO interface: legacy
	Claiming and configuring the GPIO
	Accessing the GPIO – getting/setting the value
	In atomic context
	In a non-atomic context (that may sleep)

	GPIOs mapped to IRQ
	Putting it all together

	The descriptor-based GPIO interface: the new and recommended way
	GPIO descriptor mapping - the device tree
	Allocating and using GPIO
	Putting it all together

	The GPIO interface and the device tree
	The legacy integer-based interface and device tree
	GPIO mapping to IRQ in the device tree

	GPIO and sysfs
	Exporting a GPIO from kernel code

	Summary

	Chapter 15: GPIO Controller Drivers – gpio_chip
	Driver architecture and data structures
	Pin controller guideline
	Sysfs interface for GPIO controller
	GPIO controllers and DT
	Summary

	Chapter 16: Advanced IRQ Management
	Multiplexing interrupts and interrupt controllers
	Advanced peripheral IRQs management
	Interrupt request and propagation
	Chaining IRQ
	Chained interrupts
	Nested interrupts

	Case study – GPIO and IRQ chip
	Legacy GPIO and IRQ chip
	New gpiolib irqchip API
	Interrupt controller and DT

	Summary

	Chapter 17: Input Devices Drivers
	Input device structures
	Allocating and registering an input device
	Polled input device sub-class

	Generating and reporting an input event
	User space interface
	Putting it all together
	Driver examples

	Summary

	Chapter 18: RTC Drivers
	RTC framework data structures
	RTC API
	Reading and setting time
	Driver example

	Playing with alarms

	RTCs and user space
	The sysfs interface
	The hwclock utility

	Summary

	Chapter 19: PWM Drivers
	PWM controller driver
	Driver example
	PWM controller binding

	PWM consumer interface
	PWM clients binding

	Using PWMs with the sysfs interface
	Summary

	Chapter 20: Regulator Framework
	PMIC/producer driver interface
	Driver data structures
	Description structure
	Constraints structure
	init data structure
	Feeding init data into a board file
	Feeding init data into the DT

	Configuration structure
	Device operation structure

	Driver methods
	Probe function
	Remove function
	Case study: Intersil ISL6271A voltage regulator

	Driver example

	Regulators consumer interface
	Regulator device requesting
	Controlling the regulator device
	Regulator output enable and disable
	Voltage control and status
	Current limit control and status
	Operating mode control and status

	Regulator binding
	Summary

	Chapter 21: Framebuffer Drivers
	Driver data structures
	Device methods
	Driver methods
	Detailed fb_ops
	Checking information
	Set controller's parameters
	Screen blanking
	Accelerated methods

	Putting it all together

	Framebuffer from user space
	Summary

	Chapter 22: Network Interface Card Drivers
	Driver data structures
	The socket buffer structure
	Socket buffer allocation

	Network interface structure

	The device methods
	Opening and closing
	Packet handling
	Packet reception
	Packet transmission

	Driver example
	Status and control
	The interrupt handler
	Ethtool support

	Driver methods
	The probe function
	Module unloading

	Summary

	Index

