/* * (C) 2003-2012 Anope Team * Contact us at team@anope.org * * Please read COPYING and README for further details. * * Based on the original code of Epona by Lara. * Based on the original code of Services by Andy Church. */ #ifndef ANOPE_H #define ANOPE_H #include "hashcomp.h" namespace Anope { template class map : public std::map { }; template class insensitive_map : public std::map { }; /** * A wrapper string class around all the other string classes, this class will * allow us to only require one type of string everywhere that can be converted * at any time to a specific type of string. */ class CoreExport string { private: /** * The actual string is stored in an std::string as it can be converted to * ci::string, or a C-style string at any time. */ std::string _string; public: /** * Extras. */ typedef std::string::iterator iterator; typedef std::string::const_iterator const_iterator; typedef std::string::reverse_iterator reverse_iterator; typedef std::string::const_reverse_iterator const_reverse_iterator; typedef std::string::size_type size_type; static const size_type npos = static_cast(-1); /** * Constructors that can take in any type of string. */ string() : _string("") { } string(char chr) : _string() { _string = chr; } string(size_type n, char chr) : _string(n, chr) { } string(const char *_str) : _string(_str) { } string(const std::string &_str) : _string(_str) { } string(const ci::string &_str) : _string(_str.c_str()) { } string(const string &_str, size_type pos = 0, size_type n = npos) : _string(_str._string, pos, n) { } template string(InputIterator first, InputIterator last) : _string(first, last) { } /** * Assignment operators, so any type of string can be assigned to this class. */ inline string &operator=(char chr) { this->_string = chr; return *this; } inline string &operator=(const char *_str) { this->_string = _str; return *this; } inline string &operator=(const std::string &_str) { this->_string = _str; return *this; } inline string &operator=(const string &_str) { if (this != &_str) this->_string = _str._string; return *this; } /** * Equality operators, to compare to any type of string. */ inline bool operator==(const char *_str) const { return this->_string == _str; } inline bool operator==(const std::string &_str) const { return this->_string == _str; } inline bool operator==(const string &_str) const { return this->_string == _str._string; } inline bool equals_cs(const char *_str) const { return this->_string == _str; } inline bool equals_cs(const std::string &_str) const { return this->_string == _str; } inline bool equals_cs(const string &_str) const { return this->_string == _str._string; } inline bool equals_ci(const char *_str) const { return ci::string(this->_string.c_str()) == _str; } inline bool equals_ci(const std::string &_str) const { return ci::string(this->_string.c_str()) == _str.c_str(); } inline bool equals_ci(const string &_str) const { return ci::string(this->_string.c_str()) == _str._string.c_str(); } /** * Inequality operators, exact opposites of the above. */ inline bool operator!=(const char *_str) const { return !operator==(_str); } inline bool operator!=(const std::string &_str) const { return !operator==(_str); } inline bool operator!=(const string &_str) const { return !operator==(_str); } /** * Compound addition operators, overloaded to do concatenation. */ inline string &operator+=(char chr) { this->_string += chr; return *this; } inline string &operator+=(const char *_str) { this->_string += _str; return *this; } inline string &operator+=(const std::string &_str) { this->_string += _str; return *this; } inline string &operator+=(const string &_str) { if (this != &_str) this->_string += _str._string; return *this; } /** * Addition operators, overloaded to do concatenation. */ inline const string operator+(char chr) const { return string(*this) += chr; } inline const string operator+(const char *_str) const { return string(*this) += _str; } inline const string operator+(const std::string &_str) const { return string(*this) += _str; } inline const string operator+(const string &_str) const { return string(*this) += _str; } friend const string operator+(char chr, const string &str); friend const string operator+(const char *_str, const string &str); friend const string operator+(const std::string &_str, const string &str); /** * Less-than operator. */ inline bool operator<(const string &_str) const { return this->_string < _str._string; } /** * The following functions return the various types of strings. */ inline const char *c_str() const { return this->_string.c_str(); } inline std::string &str() { return this->_string; } inline const std::string &str() const { return this->_string; } inline ci::string ci_str() const { return ci::string(this->_string.c_str()); } /** * Returns if the string is empty or not. */ inline bool empty() const { return this->_string.empty(); } /** * Returns the string's length. */ inline size_type length() const { return this->_string.length(); } /** * Returns the size of the currently allocated storage space in the string object. * This can be equal or greater than the length of the string. */ inline size_type capacity() const { return this->_string.capacity(); } /** * Add a char to the end of the string. */ inline void push_back(char c) { return this->_string.push_back(c); } /** * Resizes the string content to n characters. */ inline void resize(size_type n) { return this->_string.resize(n); } /** * Erases characters from the string. */ inline iterator erase(const iterator &i) { return this->_string.erase(i); } inline iterator erase(const iterator &first, const iterator &last) { return this->_string.erase(first, last); } inline void erase(size_type pos = 0, size_type n = std::string::npos) { this->_string.erase(pos, n); } /** * Trim leading and trailing white spaces from the string. */ inline void trim() { while (!this->_string.empty() && isspace(this->_string[0])) this->_string.erase(this->_string.begin()); while (!this->_string.empty() && isspace(this->_string[this->_string.length() - 1])) this->_string.erase(this->_string.length() - 1); } /** * Clears the string. */ inline void clear() { this->_string.clear(); } /** * Find substrings of the string. */ inline size_type find(const string &_str, size_type pos = 0) const { return this->_string.find(_str._string, pos); } inline size_type find(char chr, size_type pos = 0) const { return this->_string.find(chr, pos); } inline size_type find_ci(const string &_str, size_type pos = 0) const { return ci::string(this->_string.c_str()).find(ci::string(_str._string.c_str()), pos); } inline size_type find_ci(char chr, size_type pos = 0) const { return ci::string(this->_string.c_str()).find(chr, pos); } inline size_type rfind(const string &_str, size_type pos = npos) const { return this->_string.rfind(_str._string, pos); } inline size_type rfind(char chr, size_type pos = npos) const { return this->_string.rfind(chr, pos); } inline size_type rfind_ci(const string &_str, size_type pos = npos) const { return ci::string(this->_string.c_str()).rfind(ci::string(_str._string.c_str()), pos); } inline size_type rfind_ci(char chr, size_type pos = npos) const { return ci::string(this->_string.c_str()).rfind(chr, pos); } inline size_type find_first_of(const string &_str, size_type pos = 0) const { return this->_string.find_first_of(_str._string, pos); } inline size_type find_first_of_ci(const string &_str, size_type pos = 0) const { return ci::string(this->_string.c_str()).find_first_of(ci::string(_str._string.c_str()), pos); } inline size_type find_first_not_of(const string &_str, size_type pos = 0) const { return this->_string.find_first_not_of(_str._string, pos); } inline size_type find_first_not_of_ci(const string &_str, size_type pos = 0) const { return ci::string(this->_string.c_str()).find_first_not_of(ci::string(_str._string.c_str()), pos); } inline size_type find_last_of(const string &_str, size_type pos = npos) const { return this->_string.find_last_of(_str._string, pos); } inline size_type find_last_of_ci(const string &_str, size_type pos = npos) const { return ci::string(this->_string.c_str()).find_last_of(ci::string(_str._string.c_str()), pos); } inline size_type find_last_not_of(const string &_str, size_type pos = npos) const { return this->_string.find_last_not_of(_str._string, pos); } inline size_type find_last_not_of_ci(const string &_str, size_type pos = npos) const { return ci::string(this->_string.c_str()).find_last_not_of(ci::string(_str._string.c_str()), pos); } /** * Determine if string consists of only numbers. */ inline bool is_number_only() const { return this->find_first_not_of("0123456789.-") == npos; } inline bool is_pos_number_only() const { return this->find_first_not_of("0123456789.") == npos; } /** * Replace parts of the string. */ inline string replace(size_type pos, size_type n, const string &_str) { return string(this->_string.replace(pos, n, _str._string)); } inline string replace(size_type pos, size_type n, const string &_str, size_type pos1, size_type n1) { return string(this->_string.replace(pos, n, _str._string, pos1, n1)); } inline string replace(size_type pos, size_type n, size_type n1, char chr) { return string(this->_string.replace(pos, n, n1, chr)); } inline string replace(iterator first, iterator last, const string &_str) { return string(this->_string.replace(first, last, _str._string)); } inline string replace(iterator first, iterator last, size_type n, char chr) { return string(this->_string.replace(first, last, n, chr)); } template inline string replace(iterator first, iterator last, InputIterator f, InputIterator l) { return string(this->_string.replace(first, last, f, l)); } inline string replace_all_cs(const string &_orig, const string &_repl) { Anope::string new_string = *this; size_type pos = new_string.find(_orig), orig_length = _orig.length(), repl_length = _repl.length(); while (pos != npos) { new_string = new_string.substr(0, pos) + _repl + new_string.substr(pos + orig_length); pos = new_string.find(_orig, pos + repl_length); } return new_string; } inline string replace_all_ci(const string &_orig, const string &_repl) { Anope::string new_string = *this; size_type pos = new_string.find_ci(_orig), orig_length = _orig.length(), repl_length = _repl.length(); while (pos != npos) { new_string = new_string.substr(0, pos) + _repl + new_string.substr(pos + orig_length); pos = new_string.find_ci(_orig, pos + repl_length); } return new_string; } /** * Get the string in lowercase. */ inline string lower() { Anope::string new_string = *this; for (size_type i = 0; i < new_string.length(); ++i) new_string[i] = std::tolower(new_string[i], Anope::casemap); return new_string; } /** * Get the string in uppercase. */ inline string upper() { Anope::string new_string = *this; for (size_type i = 0; i < new_string.length(); ++i) new_string[i] = std::toupper(new_string[i], Anope::casemap); return new_string; } /** * Get a substring of the string. */ inline string substr(size_type pos = 0, size_type n = npos) const { return string(this->_string.substr(pos, n)); } /** * Iterators to the string. */ inline iterator begin() { return this->_string.begin(); } inline const_iterator begin() const { return this->_string.begin(); } inline iterator end() { return this->_string.end(); } inline const_iterator end() const { return this->_string.end(); } inline reverse_iterator rbegin() { return this->_string.rbegin(); } inline const_reverse_iterator rbegin() const { return this->_string.rbegin(); } inline reverse_iterator rend() { return this->_string.rend(); } inline const_reverse_iterator rend() const { return this->_string.rend(); } /** * Subscript operator, to access individual characters of the string. */ inline char &operator[](size_type n) { return this->_string[n]; } inline const char &operator[](size_type n) const { return this->_string[n]; } /** * Stream insertion operator, must be friend because they cannot be inside the class. */ friend std::ostream &operator<<(std::ostream &os, const string &_str); }; /** Hash an Anope::string for unorderd_map, passed as the third template arg to unordered_map */ struct hash { /* VS 2008 specific code */ enum { bucket_size = 4, min_buckets = 8 }; bool operator()(const string &s1, const string &s2) const; /* End of 2008 specific code */ /** Hash an Anope::string for unordered_map * @param s The string * @return A hash value for the string */ bool operator()(const string &s) const; }; inline std::ostream &operator<<(std::ostream &os, const string &_str) { return os << _str._string; } inline const string operator+(char chr, const string &str) { string tmp(chr); tmp += str; return tmp; } inline const string operator+(const char *_str, const string &str) { string tmp(_str); tmp += str; return tmp; } inline const string operator+(const std::string &_str, const string &str) { string tmp(_str); tmp += str; return tmp; } static const char *const compiled = __TIME__ " " __DATE__; /** The current system time, which is pretty close to being accurate. * Use this unless you need very specific time checks */ extern CoreExport time_t CurTime; extern CoreExport string Version(); extern CoreExport string VersionShort(); extern CoreExport string VersionBuildString(); extern CoreExport int VersionMajor(); extern CoreExport int VersionMinor(); extern CoreExport int VersionPatch(); /** Check whether two strings match. * @param str The string to check against the pattern (e.g. foobar) * @param mask The pattern to check (e.g. foo*bar) * @param case_sensitive Whether or not the match is case sensitive, default false. * @param use_regex Whether or not to try regex. case_sensitive is not used in regex. */ extern CoreExport bool Match(const string &str, const string &mask, bool case_sensitive = false, bool use_regex = false); /** Find a message in the message table * @param name The name of the message were looking for * @return NULL if we cant find it, or a pointer to the Message if we can */ extern CoreExport std::vector FindMessage(const string &name); /** Converts a string to hex * @param the data to be converted * @return a anope::string containing the hex value */ extern CoreExport string Hex(const string &data); extern CoreExport string Hex(const char *data, unsigned len); /** Converts a string from hex * @param src The data to be converted * @param dest The destination string */ extern CoreExport void Unhex(const string &src, string &dest); extern CoreExport void Unhex(const string &src, char *dest, size_t sz); /** Base 64 encode a string * @param src The string to encode * @param target Where the encoded string is placed */ extern CoreExport void B64Encode(const string &src, string &target); /** Base 64 decode a string * @param src The base64 encoded string * @param target The plain text result */ extern CoreExport void B64Decode(const string &src, string &target); /** Returns a sequence of data formatted as the format argument specifies. ** After the format parameter, the function expects at least as many ** additional arguments as specified in format. * @param fmt Format of the Message * @param ... any number of parameters * @return a Anope::string */ extern CoreExport string printf(const char *fmt, ...); /** Return the last error code * @return The error code */ extern CoreExport int LastErrorCode(); /** Return the last error, uses errno/GetLastError() to determine this * @return An error message */ extern CoreExport const string LastError(); } /** sepstream allows for splitting token seperated lists. * Each successive call to sepstream::GetToken() returns * the next token, until none remain, at which point the method returns * an empty string. */ class CoreExport sepstream { private: /** Original string. */ Anope::string tokens; /** Last position of a seperator token */ Anope::string::iterator last_starting_position; /** Current string position */ Anope::string::iterator n; /** Seperator value */ char sep; public: /** Create a sepstream and fill it with the provided data */ sepstream(const Anope::string &source, char seperator); virtual ~sepstream() { } /** Fetch the next token from the stream * @param token The next token from the stream is placed here * @return True if tokens still remain, false if there are none left */ virtual bool GetToken(Anope::string &token); /** Fetch the entire remaining stream, without tokenizing * @return The remaining part of the stream */ virtual const Anope::string GetRemaining(); /** Returns true if the end of the stream has been reached * @return True if the end of the stream has been reached, otherwise false */ virtual bool StreamEnd(); }; /** A derived form of sepstream, which seperates on commas */ class commasepstream : public sepstream { public: /** Initialize with comma seperator */ commasepstream(const Anope::string &source) : sepstream(source, ',') { } }; /** A derived form of sepstream, which seperates on spaces */ class spacesepstream : public sepstream { public: /** Initialize with space seperator */ spacesepstream(const Anope::string &source) : sepstream(source, ' ') { } }; /** This class can be used on its own to represent an exception, or derived to represent a module-specific exception. * When a module whishes to abort, e.g. within a constructor, it should throw an exception using ModuleException or * a class derived from ModuleException. If a module throws an exception during its constructor, the module will not * be loaded. If this happens, the error message returned by ModuleException::GetReason will be displayed to the user * attempting to load the module, or dumped to the console if the ircd is currently loading for the first time. */ class CoreException : public std::exception { protected: /** Holds the error message to be displayed */ Anope::string err; /** Source of the exception */ Anope::string source; public: /** Default constructor, just uses the error mesage 'Core threw an exception'. */ CoreException() : err("Core threw an exception"), source("The core") { } /** This constructor can be used to specify an error message before throwing. */ CoreException(const Anope::string &message) : err(message), source("The core") { } /** This constructor can be used to specify an error message before throwing, * and to specify the source of the exception. */ CoreException(const Anope::string &message, const Anope::string &src) : err(message), source(src) { } /** This destructor solves world hunger, cancels the world debt, and causes the world to end. * Actually no, it does nothing. Never mind. * @throws Nothing! */ virtual ~CoreException() throw() { } /** Returns the reason for the exception. * The module should probably put something informative here as the user will see this upon failure. */ virtual const Anope::string &GetReason() const { return err; } virtual const Anope::string &GetSource() const { return source; } }; class FatalException : public CoreException { public: FatalException(const Anope::string &reason = "") : CoreException(reason) { } virtual ~FatalException() throw() { } }; class ModuleException : public CoreException { public: /** Default constructor, just uses the error mesage 'Module threw an exception'. */ ModuleException() : CoreException("Module threw an exception", "A Module") { } /** This constructor can be used to specify an error message before throwing. */ ModuleException(const Anope::string &message) : CoreException(message, "A Module") { } /** This destructor solves world hunger, cancels the world debt, and causes the world to end. * Actually no, it does nothing. Never mind. * @throws Nothing! */ virtual ~ModuleException() throw() { } }; class ConvertException : public CoreException { public: ConvertException(const Anope::string &reason = "") : CoreException(reason) { } virtual ~ConvertException() throw() { } }; /** Convert something to a string */ template inline Anope::string stringify(const T &x) { std::ostringstream stream; if (!(stream << x)) throw ConvertException("Stringify fail"); return stream.str(); } template inline void convert(const Anope::string &s, T &x, Anope::string &leftover, bool failIfLeftoverChars = true) { leftover.clear(); std::istringstream i(s.str()); char c; bool res = i >> x; if (!res) throw ConvertException("Convert fail"); if (failIfLeftoverChars) { if (i.get(c)) throw ConvertException("Convert fail"); } else { std::string left; getline(i, left); leftover = left; } } template inline void convert(const Anope::string &s, T &x, bool failIfLeftoverChars = true) { Anope::string Unused; convert(s, x, Unused, failIfLeftoverChars); } template inline T convertTo(const Anope::string &s, Anope::string &leftover, bool failIfLeftoverChars = true) { T x; convert(s, x, leftover, failIfLeftoverChars); return x; } template inline T convertTo(const Anope::string &s, bool failIfLeftoverChars = true) { T x; convert(s, x, failIfLeftoverChars); return x; } /** Casts to be used instead of dynamic_cast, this uses dynamic_cast * for debug builds and static_cast/reinterpret_cast on releass builds * to speed up the program because dynamic_cast relies on RTTI. */ #ifdef DEBUG_BUILD # include #endif template inline T anope_dynamic_static_cast(O ptr) { #ifdef DEBUG_BUILD T ret = dynamic_cast(ptr); if (ptr != NULL && ret == NULL) throw CoreException(Anope::string("anope_dynamic_static_cast<") + typeid(T).name() + ">(" + typeid(O).name() + ") fail"); return ret; #else return static_cast(ptr); #endif } template inline T anope_dynamic_reinterpret_cast(O ptr) { #ifdef DEBUG_BUILD T ret = dynamic_cast(ptr); if (ptr != NULL && ret == NULL) throw CoreException(Anope::string("anope_dynamic_reinterpret_cast<") + typeid(T).name() + ">(" + typeid(O).name() + ") fail"); return ret; #else return reinterpret_cast(ptr); #endif } /*************************************************************************/ /** Class with the ability to keep flags on items, they should extend from this * where T is an enum. */ template class Flags { protected: std::bitset Flag_Values; const Anope::string *Flag_Strings; public: Flags() : Flag_Strings(NULL) { } Flags(const Anope::string *flag_strings) : Flag_Strings(flag_strings) { } /** Add a flag to this item * @param Value The flag */ void SetFlag(T Value) { Flag_Values[Value] = true; } /** Remove a flag from this item * @param Value The flag */ void UnsetFlag(T Value) { Flag_Values[Value] = false; } /** Check if this item has a flag * @param Value The flag * @return true or false */ bool HasFlag(T Value) const { return Flag_Values.test(Value); } /** Check how many flags are set * @return The number of flags set */ size_t FlagCount() const { return Flag_Values.count(); } /** Unset all of the flags */ void ClearFlags() { Flag_Values.reset(); } Anope::string ToString() const { std::vector v = ToVector(); Anope::string flag_buf; for (unsigned i = 0; i < v.size(); ++i) flag_buf += v[i] + " "; flag_buf.trim(); return flag_buf; } void FromString(const Anope::string &str) { spacesepstream sep(str); Anope::string buf; std::vector v; while (sep.GetToken(buf)) v.push_back(buf); FromVector(v); } std::vector ToVector() const { std::vector ret; for (unsigned i = 0; this->Flag_Strings && !this->Flag_Strings[i].empty(); ++i) if (this->HasFlag(static_cast(i))) ret.push_back(this->Flag_Strings[i]); return ret; } void FromVector(const std::vector &strings) { this->ClearFlags(); for (unsigned i = 0; this->Flag_Strings && !this->Flag_Strings[i].empty(); ++i) for (unsigned j = 0; j < strings.size(); ++j) if (this->Flag_Strings[i] == strings[j]) this->SetFlag(static_cast(i)); } }; #endif // ANOPE_H