Pagev

For Mom and Dad, without whom. . .
well, I'd just rather not think about it.

Page vii
Table of Contents
Preface Xi
1. Customizing Emacs 1
Backspace and Delete 1
Lisp 2
Keysand Strings 4
To What Is C-h Bound? 7
To What Should C-h Be Bound? 8
Evaluating Lisp Expressions 8
Apropos 10
2. Simple New Commands 13
Traversing Windows 13
Line-at-a-Time Scrolling 21
Other Cursor and Text Motion Commands 23
Clobbering Symbolic Links 24
Advised Buffer Switching 30
Addendum: Raw Prefix Argument 33
3. Cooperating Commands A4
The Symptom A
A Cure 35
Generdizing the Solution 40

4. Searching and Modifying Buffers 47

Inserting the Current Time 47
Page viii
Writestamps 50
M odifystamps 65
5. Lisp Files 71
Creating aLisp File 71
Loading the File 72
Compiling the File 76
eval-after-load a4
Local VariablesLists 78
Addendum: Security Consideration 80
6. Lists 81
The Smple View of Lists 81
List Details 83
Recursive List Functions 85
lterative List Functions 87
Other Useful List Functions 87
Destructive List Operations 89
Circular Lists?! 93
7. Minor Mode 3]
Paragraph Filling 95
Modes 96
Defining aMinor Mode 97

Mode Meat 99

8. Evaluation and Error Recovery 110

limited-save-excursion 110
eval 111
Macro Functions 112
Backquote and Unquote 113
Return Vaue 116
Failing Gracefully 119
Point Marker 120
9. A Mgjor Mode 122
My Quips File 122
Major Mode Skeleton 123
Changing the Definition of a Paragraph 125
Quip Commands 126
Pageix
Keymaps 127
Narrowing 130
Derived Modes 131
10. A Comprehensive Example 133
New York Times Rules 133
Data Representation 134
User Interface 141
Setting Up the Mode 148
Tracking Unauthorized Changes 157

Parsing the Buffer 162

Word Finder 163

Last Word 181
Conclusion 183
A. Lisp Quick Reference 185

Basics 185

Data Types 186

Control Structure 190

Code Objects 193
B. Debugging and Profiling 195

Evaluation 195

The Debugger 195

Edebug 197

The Profiler 198
C. Sharing Y our Code 200

Preparing Source Files 200

Documentation 201

Copyright 201

Posting 202
D. Obtaining and Building Emacs 203

Availability of Packages 203

Unpacking, Building, and Installing Emacs 205
Index 207

Page Xi

Preface

Before you even begin to extend Emacs, it's already the highest-function text editor thereis. Not
only can it do everything you'd normally expect (formatting paragraphs, centering lines,
searching for patterns, putting a block in upper case), not only does it have advanced features
(matching braces in source code, employing color to highlight syntactic elementsin your files,
giving online help on every keystroke and other commands), but it also performs a host of
functions you'd never dream of finding in atext editor. Y ou can use Emacs to read and compose
email and to browse the World Wide Web; you can have it run FTP for you, transparently
making remote files editable as if they were local; you can ask it to remind you about upcoming
meetings, appointmernts, and anniversaries. Asif that weren't enough, Emacs can aso play you
in agame of Go-Moku (and win, more than likely); it can tell you today's date in the ancient
Mayan calendar; and it can decompose a number into its prime factors.

With al that functionality, it may seem crazy that Emacs users often spend a significant portion
of their time extending Emacs. After all, most programmers view their editors as tools for
creating other software; why spend so much energy modifying the toal itself? A carpenter
doesn't tinker with his hammer; a plumber doesn't tinker with his wrench; they use their tools to
accomplish the job at hand. So why are Emacs users different?

The answer isthat the carpenter and the plumber would tinker with their tools to make them
better, if they knew how. Who knows exactly what they need better than they do? But they're not
toolsmiths. On the other hand, Emacsis a specia kind of tool: it's software, which means the
tool isthe same stuff as what Emacs users use it on. The user of Emacs s often a programmer,
and programming Emacs s, after al, just programming. Emacs users are in the happy position
of being their own toolsmiths.

Page xii

This book teaches Emacs Lisp programming using a series of real-life examples progressing
from trivial to sophisticated. Welll start with simple configuration tweaks that you can put in
your Emacs startup file, and by the end we'll be writing "major modes' and modifying Emacs's
own "command loop." Along the way welll learn about variables, keymaps, interactive
commands, buffers, windows, process I/O, and more. When | refer to Emacs in this book, |
specifically mean GNU Emacs. There are many editors that call themselves Emacs. Here's a bit
of the history of the name according to the authoritative On-line Hacker Jargon File, version
4.0.0, 24-Jul-1996:

[Emacs] was originally written by Richard Stallman in TECO under ITS at the MIT Al lab; Al Memo
554 described it as "an advanced, self-documenting, customizable, extensible real-time display
editor." It has since been re-implemented any number of times, by various hackers, and versions exist
that run under most major operating systems. Perhaps the most widely used version, also written by
Stallman and now called "GNU EMACS' or GNUMACS, runs principally under UNIX. It includes
facilities to run compilation subprocesses and send and receive mail; many hackers spend up to 80%
of their tube time inside it. Other variantsinclude GOSMACS, CCA EMACS, UniPressEMACS,
Montgomery EMACS, jove, epsilon, and MicroEMACS.

The examplesin this book were all devel oped and tested in GNU Emacs version 19.34 and a

pre-release version of Emacs 20.1 under various flavors of UNIX. See Appendix D, Obtaining
and Building Emacs, for information on where to find the Emacs distribution.

I've let my own progression as an Emacs user be my guide in selecting instructive examples.
The sequence of examplesin this book essentially retells the story of how my own Emacs
usage matured. For instance, from the very first moment | started using Emacs | knew | had to
do something about getting that damn BACK SPACE key not to invoke the online help! Maybe
you have that problem, too. Solving that problem is the first example we'll cover in the next
chapter.

After I'd been using Emacs for a short while, | found mysalf wanting a number of cursor-motion
shortcuts. As| learned, they were easily written in terms of Emacs's existing motion primitives.
WEe'll see several examples of those in Chapter 2, Smple New Commands. Later | needed to
have some way of undoing one of my most common and maddening typing errors. pressing
CONTROL-v severa times, when | meant to press CONTROL -b. Instead of moving the
cursor afew spacesto the left, 1'd scroll the whole window afew times and lose my place.
Fixing thiswas easily done, too, as you'll see in Chapter 3, Cooperating Commands. When |
began to manage files full of clever quotations, | needed specia tools to handle the specially
formatted files. We'll see some of those in Chapter 9, A Major Mode. Except for the first
handful of examples, which are smple one- and two-liners, each example has its own chapter.
Each chapter illustrates some problem needing

Page xiii
an Emacs Lisp solution, then presents a function or set of functions that solves the problem.

Then, just as real-life customizations tend to evolve to become more useful and more generd,
we'll revise the solution once or twice before going on to the next subject.

Each exampl e builds on the concepts of prior examples and introduces a few new ones of its
own. By the end of the book, we will have covered most major topicsin Emacs Lisp
programming and discussed the techniques for quickly finding out how to do anything you might
need to do in Emacs Lisp, using online documentation and other information. To borrow an old
saying: Give aman anew Emacs command and he can hack for a night; teach a man to make
new Emacs commands and he can hack for alifetime.

This book presumes that you're familiar with programming and with Emacs use. It would help
if you were acquainted with some variant of the Lisp programming language (of which Emacs
Lisp isone dialect), but that's not strictly necessary. The essentials of Lisp programming are
pretty simple and should quickly become clear through the examples we'll be using. There's
also Appendix A, Lisp Quick Reference, which briefly recaps Lisp fundamentals.

If you aren't familiar with the basic concepts in Emacs, refer to Learning GNU Emacs, 2nd
edition by Debra Cameron, Bill Rosenblatt, and Eric Raymond. Also useful is Emacss own
online documentation, especially the Emacs "info" manual, which is also available in book
form as The GNU Emacs Manual. If you'd like a more complete understanding of Lisp
programming, | recommend Common Lisp: A Gentle Introduction to Symbolic Computation
by David Touretzky.

This book is not areference manual for Emacs Lisp; nor, in fact, isit particularly thorough in
its coverage of the language. It's atutorial, covering topics chosen more for good instructional

flow than for exhaustiveness. For best effect it should be read from beginning to end. The Free
Software Foundation publishes The GNU Emacs Lisp Reference Manual, the definitive
reference manual on which it would be difficult to improve. It's available in printed and
electronic forms from several sources; see Appendix D.

What |s Emacs?

It's missing the point to say that Emacsis just a programmable text editor. It's also, for instance,
a C code editor. That may seem like nitpicking, but editing C code and editing text are two very
different activities, and Emacs accommodates the differences by being two different editors.
When editing code, you don't care

Page xiv

about paragraph structure. When editing text, you don't care about indenting each line according
to its syntax.

Emacsisalso aLisp code editor. It's also a hexadecimal binary file editor. It'salso a
structured outline editor. It's aso adirectory editor, atar file editor, an email editor, and a
hundred others. Each kind of editor is an Emacs mode, a chunk of Lisp code that combines
Emacs's primitive types and operations in some new way. Each mode is therefore an extension
of Emacs, which means that when you strip away al those modes—when you remove the
extensions and you're left with just the core of Emacs—you don't have any editors at all; you
have the raw materials for making editors. Y ou have an editor-builder.

What can you build with an editor-builder? Editors, of course, but what's an editor? An editor
isaprogram for viewing and altering a representation of data of some kind. By
"representation” | mean a set of rules for showing the data's structure and content, and for
indicating naturally how interactions with the data are supposed to proceed. When editing a
text file, the rules are pretty smple: each printable byte gets displayed in sequence, with
newline characters causing line breaks; and a cursor indicates where in the byte sequence the
next user-invoked operation will occur. When editing a directory, the metaphor is alittle less
straightforward—data in the directory file must first be trandlated into a human-readable
form—but the resulting interactions still seem natural.

This definition of editor covers nearly the whole range of interactive applications, and that's no
accident. Interactive applications are ailmost always editors for some kind of data or another.
Emacsthereforeis, in the end, a genera-purpose, interactive application builder. It's a user
interface toolkit! Like any good toolkit, Emacs supplies a set of user-interface widgets, a set of
operations on them, an event loop, a sophisticated /O regime, and alanguage for putting them
all together. The widget set may not be fancy and graphical like X11, Windows, or Macintosh
toolkits are, but as Emacs programmers discover, afull-blown graphical toolkit is often
overkill. 99% of most applicationsis textual, whether it's rows and columns of numbers, lists
of menu items, or lettersin a crossword puzzle diagram (as in our culminating example in
Chapter 10, A Comprehensive Example). For such applications, Emacs surpasses other toolkits
in power, sophistication, ssmplicity, and performance.

The real answer to "Why are Emacs users different?’ isn't merely that they spend time tinkering
with the tools they use. They're using Emacs for its intended purpose: to create a universe of
new tools.

Page xv

Conventions Used in This Book

The following conventions are used in this book.
Typographic Conventions

Constant WIIlison
Used for Emacs commands and all e ements of code.

[talic
Used to introduce new terms. Used for filenames, commands entered from a UNIX shdll,
newsgroups, and
Internet addresses.

Bold
Used for keystrokes.

Emacs Commands

This book follows the standard Emacs documentation when referring to keys. When you hold
down the CONTROL (CTRL) key, the syntax C- is used. When you hold downthe META or
ALT key (or use the ESCAPE key for the same effect), the syntax M- is used. We also refer to
RET for the RETURN or ENTER key, TAB for the TAB key, ESC for the ESCAPE key, and
SPC for the space bar.

Examples

Whenyouseex P vy, it meansthat the result of computing the expression on the left yields
the value on the right.

Organization of This Book

Each chapter in this book builds on the chapters before it. | recommend that you read the
chaptersin order; that way everything should make sense.

Chapter 1, Customizing Emacs
Introduces some basic changes you can make to Emacs. It will familiarize you with Emacs
Lisp, how to
evauate Lisp expressions, and how that alters Emacs's behavior.

Chapter 2, Smple New Commands
Continues the tutorial by teaching you how to write Lisp functions and install them so
they're invoked at the
right time. Hooks and the feature called advice are introduced.

Page xvi

Chapter 3, Cooperating Commands

Teaches techniques for saving information between separate function calls and helping
groups of functions work together—the first step in writing systems instead of mere
commands. Symbol properties and markers are among the topics introduced along the way.

Chapter 4, Searching and Modifying Buffers
Shows some of the most common techniques you'll need: those that affect the current buffer
and strings within it. Regular expressions are introduced.

Chapter 5, Lisp Files
Discusses loading, autoloading, and packages, which are features you'll need when you
start creating large groups of related functions.

Chapter 6, Lists
Fillsin some background on this fundamental feature of Lisp.

Chapter 7, Minor Mode
Shows how to assemble related functions and variables into an editing package called a
"minor mode." The central example in this chapter deals with making paragraph formatting
in Emacs work more like paragraph formatting in a word processor.

Chapter 8, Evaluation and Error Recovery
Shows the flexibility of the Emacs Lisp interpreter, how to control what gets evaluated
when, and how to write code that isimpervious to run-time errors.

Chapter 9, A Major Mode
Explains the differences between minor and major modes, and offers a ssimple example of
the latter: amode for treating afile of quotationsin a more structured manner than ordinary
text.

Chapter 10, A Comprehensive Example
Defines amajor mode that drastically alters Emacs's normal behavior. It's a crossword
puzzle editor and an illustration of how flexible an environment Emacsis for developing
text-oriented applications.

Appendix A, Lisp Quick Reference
Provides ahandy guide to Lisp's syntax, data types, and control structures.

Appendix B, Debugging and Profiling
Describes tools you can use to track down problemsin your Emacs Lisp code.

Appendix C, Sharing Your Code
Explains the steps you should take when you want to distribute your creations to other
people.
Page xvii

Appendix D, Obtaining and Building Emacs
Outlines the steps necessary to get aworking version of Emacs running on your system.

Obtaining the Example Programs

If you're using aWeb browser, you can get the examples from

ftp://ftp.oreilly.com/published/oreilly/nutshell/emacs_extensions.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should type in boldface.

%ftp ftp.oreilly.com

Connected to ftp.oreilly.com

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com yournamnme): anonynous

331 Guest login ok, send domain style e-nmail address as password.
Passwor d: your naneayour host. conm (use your user nanme and host here)
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/enmacsextensi ons

250 OWD command successf ul

ftp> binary (Very inportant! You nust specify binary transfer for
gzi pped files.)

200 Type set to |

ftp> get exanples.tar.gz

200 PORT command successful

150 Openi ng BI NARY node data connection for exanples.tar.gz.

226 Transfer conplete.

ftp> quit

221 CGoodbye.

Thefileisagzipped tar archive; extract the files from the archive by typing:
% gzip -dc exanples.tar.gz é tar -xvf -

System V systems require the following tar command instead:
% gzip -dc exanples.tar.gz €& tar -xvof -

If gzip is not available on your system, use separate uncompress and tar commands.

% unconpress exanples.tar.gz
% tar xvf exanples.tar

Page xvii
Acknowledgments

Thanksto Nathaniel Borenstein, who helped to dispel my chauvinism about C and taught me an
appreciation for the world's amazing variety of programming languages.

Thanks to Richard Stallman for writing Emacs—twice—and who was right about an amazing
phenomenon: hackers write better code when it's for their own satisfaction instead of for pay.

Thanks to Mike Mclnerny, whose stubborn persistence got me started using GNU Emacs—even
after several false starts convinced me it wasn't worth my time.

Thanks to Ben Liblit for ideas, code, and bug hunting in my Defer package (which was going to
be a chapter in this book until Emacs evolved parallel functionality: the timer package.)
Additional help was provided by Simon Marshall, who used and improved on many of the
ideasin hisdef er - | ock. Hi, Si.

Thanks to Linda Branagan for showing me it's possible for an ordinary person like me to write
abook. (Not that she's ordinary; not even close.)

Thanks to Emily Cox and Henry Rathvon for some insider information about crossword
puzzles.

Thanksto al the folks who reviewed and commented on early drafts of this book: Julie
Epelboim, Greg Fox, David Hartmann, Bart Schaefer, Ellen Siever, and Steve Webster.

Thanksto my partners at Zanshin Inc. and the Internet Movie Database for alowing meto
divide my energies between those projects and this book.

Thanks to my editor, Andy Oram, for coping flexibly with the aforementioned divided energies.
Thanksto Alex, my dog, for curling happily by my feet for much of the writing of this book.

Mogt of al, to Andrea Dougherty, who encouraged me, supported me, made innumerable
sacrifices, performed uncountabl e services, provided companionship when | needed it and
solitude when | needed that (never the other way around), and who in all other respects was
good for me and for this book: it must be love.

Page 1

1

Customizing Emacs
In this chapter

* Backspace and Delete

eLisp

» Keys and Strings

* To What IsC-h
Bound

*» To What Should C-h
be bound

e Evaluating Lisp
Expressions

* Apropos

This chapter introduces basic Emacs customizations, and teaches some Emacs Lisp along the
way. One of the simplest and most common customizationsis to move commands from one key
to another. Perhaps you don't like Emacs's two-key sequence for saving files (C-x C-s)
because you've been using some other editor where save isssimply C-s. Or perhaps you
sometimes accidentally type C-x C-c, which exits Emacs, when you mean to pressonly C-x,
and you'd like accidental presses of C-x C-c to have aless drastic effect. Or perhaps, asin the
example that follows, you need to work around an unusual expectation that Emacs has about
your keyboard.

Backspace and Delete

Imagine you're typing the word "Lisp" and you accidentally type "List." To correct your typo,
do you pressthe BACK SPACE key or the DELETE key?

The answer depends on your keyboard, but it's not merely a question of how the key is labeled.
Sometimes the key is labeled "Backspace,” sometimesit's labeled "Delete,” sometimes
"Erase," and sometimesit's not labeled with aword but has aleft-pointing arrow or some other
graphic. To Emacs, what mattersisn't the label but the numeric character code that the key
generates when pressed. Regardless of the label on the key, the "move |eft and erase the
previous character” key may generate an ASCII "backspace" code (decimal 8, usually denoted
BS) or an ASCII "delete” code (decimal 127, usualy denoted DEL).

In its default configuration, Emacs believes only DEL is the code meaning "move left and erase
the previous character.” If you have aBACK SPACE/DEL ETE/ERASE key that generates a
BS, it won't do what you expect when you pressit.

Page 2

What's worse iswhat your BACK SPACE/DELETE/ERASE key will do when you pressit, if
it's a BS-generating key. Emacs presumes that since BS isn't used for moving left and erasing
the previous character, it's available to perform another function. Asit happens, BS isaso the
code sent when you press C-h. If you're among those who don't need C-h to mean "move left
and erase the previous character,” then C-h isapretty natural choice for aHelp key, and in fact
that's what Emacs uses it for by default. Unfortunately, this means that if you have a
BS-generating BACK SPACE/DELETE/ERASE key, then pressing it won't backspace or
delete or erase; it will invoke Emacs's online help.

More than one tentative first-time Emacs user has been put off by the surprise that greets them
the first time they try to erase atypo. Suddenly a new Emacs window—the Help
window—jpops up, prompting the hapless user to choose some Help subcommand. The Help
window is so verbose and unexpected that it merely exacerbates the user's astonishment. The
natural panic reaction—nhit C-g ("abort the current operation") a bunch of times—is
accompanied by a cacophonous ringing of the terminal bell. It's no wonder that intelligent,
well-meaning users who might otherwise have helped swell the ranks of fervent Emacs
evangelists instead choose to continue struggling with safe, inoffensive vi. It pains me to think
of it, especially when the situation is so easily remedied. When Emacs starts, it reads and
executes the contents of the .emacs file in your home directory. Emacs Lisp is the language of
thisfile, and as we will discover in the course of this book, there's almost nothing you can't
customize in Emacs by writing some Emacs Lisp and putting it in .emacs. The first thing well
look at is adding some code to .emacs to make BS and DEL both do "back up and erase a
character,” moving the Help command to some other key. First we'll need to take alook at
Lisp, the language of the .emacs file.

Lisp
Various forms of Lisp have been around since the 1950s. It is traditionally associated with
artificia intelligence applications, for which Lisp is well-suited because it permits symbolic

computation, can treat code as data, and simplifies building very complicated data structures.
But Lisp is much more than just an Al language. It is applicable to a wide range of problems, a
fact that is frequently overlooked by computer scientists but which iswell known to Emacs
users. Among the features that distinguish Lisp from other programming languages are:

Page 3
Fully-parenthesized prefix notation

All expressions and function callsin Lisp are surrounded by parentheses,” and the function
name aways precedes the arguments to the function. So whereas in other languages you
may be able to write:

X +y
to apply the + function to the arguments x and y, in Lisp you write
(+xy)

"Prefix notation” means that the operator precedes the operands. When the operator is
between the operands, it's called "infix notation."

Though unfamiliar, prefix notation has some benefits over infix notation. In infix languages,
to write the sum of five variables you need four plus signs:

atb+ c +d+e

Lisp ismore concise:

(+abcde

Also, questions of operator precedence do not arise. For example, is the value of
3+4*5

35 or 23?1t depends on whether * has higher precedence than +. But in Lisp, the confusion
vanishes.

(+ 3 (* 45)) ‘result is 23
(* (+ 34) 5 ‘result is 35

(Commentsin Lisp are introduced with a semicolon and continue to the end of theline.)
Finally, while infix languages need commas to separate the arguments to a function:

foo(3 + 4, 5 + 6)
Lisp doesn't need that extra bit of syntax:
(foo (+ 3 4) (+5 6))

List data type

Lisp has abuilt-in data type called alist. A list isaLisp object containing zero or more
other Lisp objects, surrounded by parentheses. Here are some lists:

(hell o there) ; list containing two "synbol s"

(12 xyz") ; two nunbers and a string
(a (b c)) ; a synbol and a sublist (containing two !

() ; the enpty list

" The proliferation of parenthesesin Lisp is afeature that Lisp critics cheerfully decry as asure sign
of itsinferiority. According to them, Lisp standsfor "L ots of Infernal Stupid Parentheses." (In fact,
Lisp standsfor "List Processing.") In my view, the much simpler syntax renders Lisp code more
readable, not less, than code in other languages, as | hope you will agree.

Page 4

Lists can be assigned to variables, passed as arguments to functions and returned from
them, constructed with such functionsascons and append, and taken apart with such
functionsascar and cdr . Well be covering al that in plenty of detail later.

Garbage collection

Lisp is agarbage-collected language, which means that Lisp itself automatically reclaims
the memory used by your program's data structures. By contrast, with languages such as C,
one must explicitly allocate memory with mal | oc when it's needed, then explicitly release
itwithf r ee. (Themal | oc/ f r ee approach and otherslike it in non-garbage-collecting
languages are prone to abuse. Prematurely releasing allocated memory is one of the world's
greatest sources of program errors, and forgetting to release allocated memory can cause
programs to "bloat" until all available memory is used up.)

For al the convenience that garbage collection affords the programmer, it also has a
drawback: periodically, Emacs stops everything it's doing and displays the message
"Garbage collecting. . . " to the user. The user cannot use Emacs until garbage collection is
finished.” This usually takes only a second or less, but it may happen very often. Later on
well learn some programming practices that help to reduce the amount of garbage
collection that takes place.

The word expression usually means any piece of Lisp code or any Lisp data structure. All Lisp
expressions, whether code or data, can be evaluated by the Lisp interpreter built into Emacsto
make them yield some computational result. The effect of evaluating avariable isto access the
Lisp object previoudly stored in the variable. Evaluating alist isthe way to invoke Lisp
functions, as we'll see below. Since the invention of Lisp, there have been many Lisp diaects,
some of which barely resemble the others. MacLisp, Scheme, and Common Lisp are some of
the better-known ones. Emacs Lisp is different from all of these. This book focuses only on
Emacs Lisp.

Keysand Strings

The goal of this chapter isto make any BS-generating key work the same as any
DEL -generating key. Unfortunately, C-h will no longer invoke the Help command.

* Emacs uses a mark-and-sweep garbage collection scheme, which is one of the easiest waysto
implement garbage collection. There are other approaches to implementing garbage collection that
would not be so intrusive from the user's point of view; for instence, so-called "incremental" garbage
collection can take place without bringing Emacs to a halt. Unfortunately, Emacs does not employ

one of these more advanced approaches.

Page 5

You'll need to choose some other key to invoke Help; my own choice for the new Help key is
META-question-mark.

The META Key

The META key works like the CONTROL key and the SHIFT key, which means that you hold
it down while pressing some other key. Such keys are called modifiers. Not all keyboards have
aMETA key, though. Sometimesthe ALT key will serve the same purpose, but not all
keyboards have an ALT key, either. In any case, you don't need to usethe META key or the
ALT key. The single keystroke M ET A-x can always be replaced with the two-key sequence
ESC x. (Notethat ESC is not amodifier—you pressit and release it like a normal key before
pressing x.)

Binding Keystrokes to Commands

In Emacs, every keystroke invokes acommand or is part of a multiple-key sequence that
invokes a command. Commands are specia kinds of Lisp functions, as we will see. Making a
keystroke invoke a command such as Help is known as binding the keysequence to the
command. WEe'll need to execute some Lisp code to bind keys to commands. One Lisp function
for doing thisisgl obal - set - key.

Hereswhat acall to gl obal - set - key looks like. Remember that afunction call inLispis
smply aparenthesized list. The first element of the list is the name of the function, and any
remaining elements are the arguments. The function gl obal - set - key takes two arguments:
the keysequence to bind, and the command to bind it to.

(gl obal - set - key keysequence command)
One important thing to note about Emacs Lisp isthat it is case-sensitive.
The keysegquence we've chosen is M ETA-question-mark. How is this denoted in Emacs Lisp?
Denoting Keysin Strings

There are afew different ways to write a keysequence in Emacs Lisp notation. The smplest is
to writethe keysasastring. In Lisp, astring is a sequence of characters surrounded with
double quotes.

"xyz " ; three-character string

Page 6
To get adouble quote in the string itself, precede it with abackslash (\):
"l said, \"Look out!\""
This represents the string containing these characters:

| said, "Look out!"

To include a backslash in the string, precede it with another backs ash.

An ordinary key is denoted by writing the character in a string. For instance, the keystroke q is
denoted in Lisp by the string "g". The keystroke \ would be written as "\ \".

Special characters such as META-question-mark are denoted in strings using a special
gyntax: "\M-?". Even though there are four characters inside the double quotes, Emacs reads
this as a string containing the single character called META question-mark.”

In Emacsjargon, M- x is shorthand for META- X, and "\M-x" is the string version.
CONTROL-x is abbreviated C- x in Emacs documentation, and in strings is written as: "\C- x
". You can combine the CONTROL and META keys, too. CONTROL META-x is denoted
C-M- x and iswritten as "\C-\M- x " in strings. "\C-\M- x ", incidentally, is interchangeable
with "\M-\C- x " (META-CONTROL - x).

(CONTROL- x is also sometimes abbreviated ~x in documentation, corresponding to this
aternative string syntax: "\"x".)

Now we know how to fill in the first argument to our gl obal - set - key exanpl e:

(gl obal -set-key "\M?" comrand)

(One other way to write the keysequence "\M-?" is"\e?". The string "\e" denotes the escape
character, and M- x isthe same as ESC x.)

Next we must figure out what belongs in place of command. This argument should be the name
of the Help function that we want M -? to invoke-i.e., the function that C-h now invokes. In
Lisp, functions are named with symbols. Symbols are like function names or variable namesin
other languages, although Lisp alows awider variety of charactersin symbols than most
languages alow in their variable names. For instance, legal Lisp symbolsincludel et * and
up&down- p.

* You can use thel engt h function, which returns the length of astring, to confirm this. If you
evauate (length" \M-? "), theresult is 1. How to "evaluate" is covered later in this chapter.

Page 7

ToWhat |s C-h Bound?

In order to find the symbol that names the Help command, we can use C-h b, which invokes
another command called descr i be- bi ndi ngs. Thisisone of the Help system's many
subcommands. It presents awindow listing al the keybindingsin effect. Looking through it for
the C-h binding, we find thisline:

Ch hel p- command
Thistellsusthat hel p- conmand isthe symbol that names the function that invokes Help.

Our Lisp exampleis amost complete, but we can't just write

(gl obal -set-key "\M?" hel p-command) ; al nost right!

Thisiswrong because of the way symbols are interpreted when they appear in Lisp
expressions. If asymbol appearsin the first position of alist, it's the name of afunction to
execute. If it appears elsewhere, it's a variable whose value needs to be retrieved. But when
werun gl obal - set - key as shown, we don't want the value contained in

hel p- conmand, whatever that may be. The value we want is the symbol hel p- command
itself. In short, we wish to prevent the symbol from being evaluated before it's passed to

gl obal - set - key. After all, asfar aswe know, hel p- command doesn't have avalueasa
variable.

The way to prevent asymbol (or any Lisp expression) from being evaluated is to quote it by
preceding it with asingle quote (). It looks like this:

(gl obal -set-key * \M?" 'hel p- comrand)

Our Lisp example is now complete. If you place thisline in your .emacsfile, then M-? will
invoke hel p- command the next time you run Emacs, and in all future Emacs sessions. (Soon
we'll learn how to make Lisp expressions take effect immediately.) M-? b will invoke
descri be- bi ndi ngs theway C-h b did before (and still does—at this point, both M-?
and C-h are bound to hel p- command).

Incidentally, to illustrate the difference between quoting and not quoting, the same effect could
be achieved with

(setq x ' hel p- commrand) ; setq assigns a variable
(gl obal -set-key "\M?" x) ; usex's val ue

Thefirst line sets the variable x to hold the symbol hel p- command. The second uses x's
value-the symbol hel p- conmand—asthe binding for M-?. The only difference between this
and the first exampleis that now you end up with aleftover variable named x that didn't exist
before.

Page 8

Symbols aren't the only things that may follow a' character; any Lisp expression can be quoted,
including lists, numbers, strings, and other kinds of expressions we'll learn about later. Writing
‘expr is shorthand for

(quot e expr)

which, when evaluated, yields expr. Y ou might have noticed that a quote is required before the
symbol hel p- conmmand but not before the string argument, "\M-?". Thisis because in Lisp,
strings are self-evaluating, which means that when the string is evaluated, the result isthe
string itself. So quoting it, while harmless, is redundant. Numbers, characters, and vectors are
other types of self-evaluating Lisp expressions.

To What Should C-h Be Bound?

Now that we've bound hel p- command to M-?, the next thing to do isto change the binding
for C-h. Using exactly the same process just described-that is, running

descri be- bi ndi ngs (with either C-h b or M-? b at this point)-we find that the command
invoked by DEL isdel et e- backwar d- char .

So we can write
(gl obal -set-key "\ G h" del et e-backwar d- char)

Now DEL and C-h do the same thing. If you put these linesinto your .emacsfile:

(gl obal -set-key "\M?" ' hel p- conmand)
(gl obal -set-key "\ G h" del et e- backwar d- char)

then in your future Emacs sessions, your BACK SPACE/DEL ETE/ERASE key will do the
right thing, whether it sends a BS code or a DEL code. But how can we cause these changesto
take effect in the current session? This requires explicit evaluation of these two Lisp
expressions.

Evaluating Lisp Expressions
There are several waysto explicitly evaluate Lisp expressions.

1. You can put the Lisp expressionsin afile, then load the file. Suppose you place the
expressionsin afile named rebind.el. (Emacs Lisp filenames customarily endin .el.) You
could then type M -x load-file RET rebind.el RET to cause Emacsto evaluate the contents
of that file.

If you placed those expressions into your .emacs file, you could load .emacs in the same
way. But after you've been using Emacs for awhile, your .emacs tendsto grow, and if it's
very large, loading it could be Slow. In that case, you wouldn't want to load the entire file
just to get the effect of a couple of small changes. That brings us to our next option.

Page 9

2. You can usethe command eval - | ast - sexp, whichisboundto” C-x C-e. (Sexp+ isan
abbreviation for S-expression, which in turn is short for symbolic expression, which is
another name for "Lisp expression.”) This command evaluates the Lisp expression to the | eft
of the cursor. So what you'd do is position the cursor at the end of thefirst line;

(gl obal -set-key "\M?" ' hel p- conimand) j
(gl obal -set-key "\ G h" 'del et e-backwar d-char)

and press C-x C-e; then move to the end of the second line:

(gl obal -set-key "\M?" ' hel p- conmand
(gl obal -set-key "\ G h" 'del et e-backward-char) j

and press C-x C-e again. Note that each time you press C-x C-e, the result of evaluating
gl obal - set - key-the special symbol ni | (which we'll see again later)—is shownin
Emacs's message area at the bottom of the screen.

3. You can use the command eval - expr essi on, which isbound to M-;. This command
prompts you in the minibuffer (the area at the bottom of the screen) for aLisp expression,
then evaluates it and shows the resullt.

eval - expr essi on isone of afew commands considered by the makers of Emacs to be
dangerous for novice usersto try. Hogwash, | say; nevertheless, the command isinitially

disabled, so when you try to use it, Emacs tells you "Y ou have typed M-:, invoking disabled
command eval - expr essi on." Thenit displays adescription of eval - expr essi on
and prompts you as follows:

You can now type
Space to try the command just this once,
but |l eave it disabl ed,
Ytotry it and enable it (no questions if you use it again),
N to do nothing (comand renai ns di sabl ed).

If you choose Y, Emacs adds the following Lisp expression to your .emacs.
(put 'eval -expression 'disabled nil)

(The put function relates to property lists, which well seein the section on " Symbol
Properties’ in Chapter 3.) My adviceisto put thisin your .emacs yourself before you ever
get this message from Emacs, so you'll never have to bother with the "disabled command”
warning. As soon as you put the put

*Technically, one should only speak of keysequences being bound to commands, not commands being
bound to keysequences. (To say that a keysequenceis "bound" to acommand correctly signifiesthat
there's just one thing it can do-invoke that command. To say that acommand is"bound” to a
keysequence would mean that only one keysequence can invoke the command, but that's never the
case.) But this misuse of "bound to" is as common as the correct use, and rarely causes confusion.

+ Pronounced "sex pee." Unfortunately.

4 Thiskeybinding is new in Emacs 19.29. In prior versions, eval - expr essi on was bound to
M-ESC by defaullt.

Page 10

function in .emacs, of course, it'sagood ideato evaluate it so it takes effect in the present
session, using eval - | ast - sexp as described above.

4.Youcanusethe*scr at ch* buffer. This buffer isautomatically created when Emacs
starts. The buffer isin Lisp Interaction mode. In thismode, pressing C-j invokes
eval - print -1 ast - sexp,whichislikeeval - | ast sexp except that the result of
the evaluation isinserted into the buffer at the location of the cursor. Another feature of
Lisp Interaction mode isits ability to complete a partially typed Lisp symbol when you
press M-TAB (which invokes| i sp- conpl et e- synbol). Lisp Interaction modeis
particularly useful for testing and debugging Lisp expressions that are too long to type into
the minibuffer, or that yield complicated data structures when evaluated.

Whichever method you use, evaluating the gl obal - set - key expression results in the new
bindings being used.

Apropos

Before wrapping up thisfirst example, let's discuss Emacs's most important online help
facility, apr opos. Suppose you're one of those who have both BS and DEL keys and think
it'sagood ideafor BS to erase the character preceding the cursor and DEL to erase the
character following the cursor. Y ou know that del et e- backwar d- char isthe command
that accomplishes the former, but you don't know which command achieves the latter. You

strongly suspect that Emacs must have such a command. How do you find it?

The answer isto usethe apr opos command, which allows you to search all known variables
and functions for a pattern you specify. Try this

M x apropos RET del ete RET

Theresult isabuffer listing al the matches for "delete” among Emacs's variables and
functions. If we search that buffer for occurrences of the word "character," we narrow the field
down to

backwar d- del et e- char

Command: Del ete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy

Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char

Command: Del ete the previous N characters (following if Nis negative).
del et e-char

Command: Delete the following N characters (previous if Nis negative).

* All Emacs commands, regardless of which keys (if any) they're bound to, can be invoked with M -x command-

binding for acommand, execut e- ext ended- commrand, which prompts for the name of a command to exe

Page 11
Thefunction del et e- char isthe one we want.

(gl obal -set-key "\ G ?" 'del ete-char)
(For historical reasons, the way to write the DEL character is CONTROL -question-mark.)

You may invoke apr opos with a prefix argument. In Emacs, pressing C-u before executing a
command is away to pass extrainformation to the command. Frequently, C-u isfollowed by a
number; for instance, C-u 5 C-b means "move the cursor left 5 characters.” Sometimesthe
extrainformation isjust the fact that you pressed C-u.

When apr oposisinvoked with a prefix argument, it not only reports Emacs functions and
variables that match the search pattern, it aso reports any existing keybindings for each
command in thelist. (Thisisn't the default because finding the keybindings can be slow.) Using
C-uM-x apropos RET delete RET and picking out occurrences of "character” as before, we
come up with:

backwar d- del et e- char (not bound to any keys)

Command: Delete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy (not bound to any keys)

Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char C h, DEL

Command: Delete the previous N characters (following if Nis negative).
del et e-char Cd

Command: Delete the following N characters (previous if Nis negative).

This confirmsthat both C-h and DEL now invoke del et e- backwar d- char , and also
informsusthat del et e- char aready hasabinding: C-d. After we execute

(gl obal -set-key "\ G ?" 'del ete-char)

if werun apr opos again, wefind

backwar d- del et e- char (not bound to any keys)
Command: Delete the previous N characters (following if Nis negative).
backwar d- del et e- char - unt abi fy (not bound to any keys)
Command: Del ete characters backward, changing tabs into spaces.

del et e- backwar d- char Ch

Command: Delete the previous N characters (following if Nis negative).
del et e-char Cd, DEL

Command: Delete the following N characters (previous if Nis negative).

Page 12

When we know that the target of our search is an Emacs command, as opposed to a variable or
function, we can further limit the scope of the search by using command- apr opos (M-? a)
instead of apr opos. The difference between acommand and other Lisp functionsis that
commands have been written specialy to be invoked interactively, i.e., from a keybinding or
with M-x. Functions that aren't commands can only be invoked as function calls from other
Lisp code or by such commandsaseval - expr essi on andeval - | ast - sexp. Well
look at the roles of functions and commands more in the next chapter.

Page 13

2

Simple New Commands
In this chapter:

* Traversing Windows

* Line-at-a-Time
Scrolling

* Other Cursor and
Text Motion
Commands

* Clobbering Symbolic
Links

¢ Advised Buffer
Switching

¢ Addendum Raw
Prefix Argument

In this chapter we'll develop severa very small Lisp functions and commands, introducing a
wealth of concepts that will serve us when we tackle larger tasks in the chaptersto follow.

Traversing Windows

When | started using Emacs, | was dissatisfied with the keybinding C-x o, ot her - wi ndow. It
moves the cursor from one Emacs window into the next. If | wanted to move the cursor to the
previous window instead, | had to invoke ot her - wi ndow with -1 as an argument by typing
C-u - 1 C-x 0, which is cumbersome. Just as cumbersome was pressing C-x o repeatedly until

| cycled through al the windows and came back around to what had been the "previous' one.

What | really wanted was one keybinding meaning "next window" and a different keybinding
meaning "previous window." | knew | could do this by writing some new Emacs Lisp code and
binding my new functions to new keybindings. First | had to choose those keybindings. "Next"
and "previous' naturally suggested C-n and C-p, but those keys are bound to next - | i ne and
previ ous- | i ne and I didn't want to change them. The next best option was to use some
prefix key, followed by C-n and C-p. Emacs aready uses C-x as a prefix for many
two-keystroke commands (such as C-x o itself), so | chose C-x C-n for "next window" and
C-x C-p for "previous window."

| used the Help subcommand descr i be- key™ to see whether C-x C-n and C-x C-p were
aready bound to other commands. | learned that C-x C-n was the keybinding

* The keybinding for descr i be- key isM-? k if you've changed thehel p- command binding as
described in Chapter 1, Customizing Emacs; otherwise it's C-h k.

Page 14

for set - goal - col umm, and C-x C-p was the keybinding for mar k- page. Binding them to
commands for "next window" and "previous window" would override their default bindings.
But since those aren't commands | use very often, | didn't mind losing the keybindings for them.
| can always execute them usng M-x.

Once I'd decided to use C-x C-n for "next window," | had to bind some command to it that
would cause "next window" to happen. | wanted a "next window" function that would move the
cursor into the next window by default-just like C-x o, which invokes ot her - wi ndow. So
creating the keybinding for C-x C-n was a smple matter of putting

(gl obal -set-key "\ G x\CGn" 'other-w ndow)

into my .emacs. Defining acommand to bind to C-x C-p was trickier. There was no existing
Emacs command meaning "move the cursor to the previous window." Time to define one!

Defining other-window-backward

Knowing that ot her - wi ndow can move the cursor to the previous window when given an
argument of - 1, we can define a new command, ot her - wi ndow-backward, as follows:

(defun ot her-w ndow backward ()
"Sel ect the previ ous wi ndow. "
(interactive)

(ot her-wi ndow -1))

Let'slook at the parts of this function definition.
1. A Lisp function definition begins with def un.

2. Next comes the name of the function being defined; in this case, I've chosen
ot her - wi ndow backwar d.

3. Next comes the function's parameter list.” This function has no parameters, so we specify an
empty parameter list.

4. The string " Select the previous window." is the new function's documentation string, or
docstring. Any Lisp function definition may have a docstring. Emacs displays the docstring
when showing online help about the function, as with the commands
descri be-function (M-?f) or apr opos.

5. The next line of the function definition, (i nt er act i ve), isspecial. It distinguishes this
function as an interactive command.

* What's the difference between a " parameter” and an "argument”? The terms are usually used
interchangeably, hut technically speaking, "parameter” refersto the variable in the function definition,
while "argument” isthe value that gets passed in when the function is called. The value of the argument
is assigned to the parameter.

Page 15

A command, in Emacs, isaLisp function that can be invoked interactively, which means it
can be invoked from a keybinding or by typing M -x command-name. Not all Lisp
functions are commands, but all commands are Lisp functions.

Any Lisp function, including interactive commands, can be invoked from within other Lisp
code using the (function arg . . .) syntax.

A function is turned into an interactive command by using the specia (i nt er acti ve)
expression at the beginning of the function definition (after the optional docstring). More
about this "interactive declaration” below.

6. Following the name of the function, the parameter list, the docstring, and the
i nteracti ve declaration isthe body of the function, which is smply a sequence of Lisp
expressions. This function's body is the sole expression (ot her - wi ndow -1), which
invokes the function ot her - wi ndow with an argument of - 1.

Evaluating the def un expression defines the function. It's now possibleto call itin Lisp
programs by writing (ot her - wi ndow backwar d); toinvoke it by typing M -x

other -window-backward RET; even to get help on it by typing M-? f
other-window-backward RET. Now all that's needed is the keybinding:

(gl obal -set-key "\ G x\C p" ' other-w ndow backwar d)
Parameterizing other-window-backward

This keybinding does what we need, but we can improve on it abit. When using C-x o (or,
now, C-x C-n) toinvoke ot her - wi ndow, you can specify a numeric prefix argument n to
changeitsbehavior. If nisgiven, ot her - wi ndow skips forward that many windows. For
instance, C-u 2 C-x C-n means "move to the second window following thisone." Aswe've
seen, n may be negative to skip backward some number of windows. It would be natural to

giveot her - wi ndow backwar d the ability to skip backward some number of windows
when aprefix argument nis given-skipping forward if nisnegative. Asitis,
ot her - w ndow backwar d can only move backward one window at atime.

In order to change it, we must parameterize the function to take one argument: the number of
windows to skip. Here's how we do that:

(defun ot her -w ndow backward (n)
"Sel ect Nth previ ous w ndow. '
(interactive "p")

(ot her-wi ndow (- n)))

* Again, it'sonly M-? f if you've changed the keybinding for hel p- command to M-?. From here on,
I'll assume that you have, or if you haven't you at least know what | mean.

Page 16

Weve given our function a single parameter named n. We've aso changed thei nt er acti ve
declarationto (i nt eracti ve "p"), and weve changed the argument we pass to

ot her - wi ndowfrom-1to(- n).Let'slook at these changes, starting with the

i nteracti ve declaration.

An interactive command is, as we have observed, akind of Lisp function. That means that the
command may take arguments. Passing arguments to afunction from Lisp is easy; they smply
get written down in the function call, asin (ot her - wi ndow - 1). But what if the function is
invoked as an interactive command? Where do the arguments come from then? Answering this
guestion isthe purpose of thei nt er act i ve declaration.

Theargumenttoi nt er act i ve describes how to obtain arguments for the command that
contains it. When the command takes no arguments, theni i nt er act i ve has no arguments,
asinour first draft of ot her - w ndow backwar d. When the command does take
arguments, theni nt er act i ve takes one argument: a string of code |etters, one code letter
per argument being described. The code letter p used in this example means, "if thereis a
prefix argument, interpret it as a number, and if thereis no prefix argument, interpret that as the
number 1."* The parameter n receives the result of this interpretation when the command is
invoked. So if the user invokes ot her - wi ndow backwar d by typing C-u 7 Cx C-p, nwill
be 7. If the user smply types C-x C-p, n will be 1. Meanwhile,

ot her - wi ndow backwar d can also be called non-interactively from other Lisp codein
the normal way: (ot her - w ndow backwar d 4), for example.

The new version of ot her - wi ndow backwar d callsot her - wi ndow with the argument
(- n). Thiscomputes the negative of n by passing it to the function -. (Note the space between
the - and the n.) The function - normally performs subtraction-for instance, (- 5 2) yields
3—but when given only one argument, it negatesit.

In the default case, wherenis1, (- n)is-1 andthecall to ot her - wi ndow becomes

(ot her - wi ndow - 1)—precisely asin thefirst version of this function. If the user specifies
anumeric prefix argument-C-u 3 C-x C-p, say—then we call (ot her - wi ndow - 3), moving
three windows backward, which is exactly what we want.

It's important to understand the difference between the two expressions (- n) and - 1. Thefirst

isafunction cal. There must be a space between the function name and the argument. The
second expression is an integer constant. There may not be a space between the minus sign and
the 1. It is certainly possible to write (- 1) (though there's no reason to incur the cost of a
function call when you

* Toseeadescription of i nt er act i ve' scodeletters, typeM-?fi nt eracti ve RET.

Page 17

can aternatively write- 1) . It isnot possible to write - n, because n is not a constant.

Making the Argument Optional

There's one more improvement we can make to ot her - wi ndow backwar d, and that'sto
make the argument n optional when invoked from Lisp code, just as giving a prefix argument is
optiona when invoking ot her - wi ndow backwar d interactively. It should be possible to
pass zero arguments (like this: (ot her - wi ndow backwar d)) and get the default behavior
(asif calling this: (ot her - wi ndow backwar d 1)). Here's how that's done:

(def un ot her-w ndow backward (&optional n)
"Sel ect Nth previous wi ndow. "
(interactive "p")
(ifn
(ot her-wi ndow (- n)) ;ifn s non-nil
(ot her-wi ndow -1))) ;ifn osnil

The keyword &opt i onal appearing in a parameter list meansthat al subsequent parameters
are optional. The function may be called with or without a value for an optional parameter. If
no value is given, the optional parameter gets the specia valueni | .

The symbol ni | isspecial in Lisp for three reasons:

It designates falsehood. In the Lisp structures that test a true/false condition—i f , cond,
whi | e,and, or, andnot-avaueof ni | means"fadse" and any other value means
"true." Thus, in the expression
(if n
(ot her-wi ndow (- n))
(ot her -wi ndow - 1))

(which isLisp's version of an if-then-else statement), first nis evaluated. If the value of n
istrue (non-ni |), then

(ot her-wi ndow (- n))
is evaluated, otherwise
(ot her -wi ndow - 1)

is evaluated.

There is another symbol, t , that designates truth, but it islessimportant than ni | . See
below.

It isindistinguishable from the empty list. Inside the Lisp interpreter, the symbol ni | and

the empty list () are the same object. If you call | i st p, which tests whether its argument
isalist, onthe symbol ni | , you'll get the result t, which means truth. Likewise, if you call
synbol p, which tests whether its

Page 18

argument isasymbol, on the empty list, you'll get t again. However, if you call synbol p
on any other ligt, or | i st p on any other symbol, you'll get ni 1—falsehood.

It isits own vaue. When you evaluate the symbol ni | , theresult isni | . For this reason,
unlike other symbols, ni | doesn't need to be quoted when you want its name instead of its
value, because its name is the same asits value. So you can write

(setg x nil) ;assign ni | tovariable x
instead of writing
(setg x "nil)

although both will work. For the same reason, you should never ever assign anew value to
ni | *," even though it looks like a valid variable name.

Another function of ni | isto distinguish between proper and improper lists. Thisuseis
discussed in Chapter 6, Lists.

Thereisasymbol, t , for designating truth. Likeni | , t isits own value and doesn't need to be
quoted. Unlikeni | , t isn't mysteriously the same object as something else. And also unlike

ni | , which isthe only way to denote falsehood, all other Lisp values denote truth just like t
does. However, t isuseful when al you mean istruth (asin the result of synbol p) and you
don't want to choose some arbitrary other Lisp value, like 17 or "pl ugh", to stand for truth.

Condensing the Code
As mentioned before, the expression
(if n ; if this.
(other-window (- n)) ;. . . then this
(ot her-wi ndow -1)) ;. . . else this

isthe Lisp version of an if-then-else statement. Thefirst argumenttoi f isatest. It is evaluated
to see whether it yields truth (any expression except ni |) or falsehood (ni |). If it'struth, the
second argument-the "then” clause-is evaluated. If it's falsehood, the third argument—the "else”
clause (whichis optional)—is evaluated. Theresult of i f isawaysthe result of the last thing
it evaluates. See Appendix A, L