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Abstract

LISP has survived for 21 years because it is an approximate lo-
cal optimum in the space of programming languages. However, it
has accumulated some barnacles that should be scraped off, and some
long-standing opportunities for improvement have been neglected. It
would benefit from some co-operative maintenance especially in cre-
ating and maintaining program libraries. Computer checked proofs
of program correctness are now possible for pure LISP and some ex-
tensions, but more theory and some smoothing of the language itself
are required before we can take full advantage of LISP’s mathematical
basis.

1999 note: This article was included in the 1980 Lisp conference
held at Stanford. Since it almost entirely corresponds to my present
opinions, I should have asked to have it reprinted in the 1998 Lisp
users conference proceedings at which I gave a talk with the same
title.
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1 Introduction

On LISP’s approximate 21st anniversary, no doubt something could be said
about coming of age, but it seems doubtful that the normal life expectancy of
a programming language is three score and ten. In fact, LISP seems to be the
second oldest surviving programming language after Fortran, so maybe we
should plan on holding one of these newspaper interviews in which grandpa
is asked to what he attributes having lived to 100. Anyway the early history
of LISP was already covered in [McC81], reprinted from the Proceedings of
the 1977 ACM conference on the history of programming languages.

Therefore, these notes first review some of the salient features of LISP and
their relation to its long survival, noting that it has never been supported by
a computer company. LISP has a partially justified reputation of being more
based on theory than most computer languages, presumably stemming from
its functional form, its use of lambda notation and basing the interpreter on
a universal function.

From the beginning, I have wanted to develop techniques for making com-
puter checkable proofs of LISP programs, and now this is possible for a large
part of LISP. Still other present and proposed facilities are in a theoretically
more mysterious state. I will conclude with some remarks on improvements
that might be made in LISP and the prospects for replacing it by something
substantially better.

2 The Survival of LISP

As a programming language, LISP is characterized by the following ideas:

1. Computing with symbolic expressions rather than numbers.

2. Representation of symbolic expressions and other information by list
structure in computer memory.

3. Representation of information on paper, from keyboards and in other
external media mostly by multi-level lists and sometimes by S-expressions.
It has been important that any kind of data can be represented by a
single general type.

4. A small set of selector and constructor operations expressed as func-
tions, i.e. car, cdr and cons.
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5. Composition of functions as a tool for forming more complex functions.

6. The use of conditional expressions for getting branching into function
definitions.

7. The recursive use of conditional expressions as a sufficient tool for build-
ing computable functions.

8. The use of λ-expressions for naming functions.

9. The storage of information on the property lists of atoms.

10. The representation of LISP programs as LISP data that can be manip-
ulated by object programs. This has prevented the separation between
system programmers and application programmers. Everyone can “im-
prove” his LISP, and many of these “improvements” have developed
into improvements to the language.

11. The conditional expression interpretation of Boolean connectives.

12. The LISP function eval that serves both as a formal definition of the
language and as an interpreter.

13. Garbage collection as the means of erasure.

14. Minimal requirements for declarations so that LISP statements can be
executed in an on-line environment without preliminaries.

15. LISP statements as a command language in an on-line environment.

Of course, the above doesn’t mention features that LISP has in common
with most programming languages in its “program feature”.

All these features have remained viable and the combination must be
some kind of approximate local optimum in the space of programming lan-
guages, because LISP has survived several attempts to replace it, some rather
determined. It may be worthwhile to review a few of these and guess why
they didn’t make it.

1. SLIP included list processing in Fortran. It used bidirectional lists
and didn’t allow recursive functions or conditional expressions. The
bidirectional lists offered advantages in only a few applications but
otherwise took up space and time. It didn’t encourage on-line use,
since Fortran doesn’t.
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2. Formac was another Fortran based language that was pushed for a
while by part of IBM. It was dedicated to manipulating a class of
algebraic formulas written in Fortran style and was also oriented to
batch processing.

3. Formula Algol was dedicated to the linguistic pun that the elementary
operations can be regarded as operating on numbers or on formulas.
The idea was that if a variable x has no value, then operations on
expressions involving x must be regarded as operating on the formula.
A few programs could be written, but the pun proved an inadequate
basis for substantial programs.

4. One of the more interesting rivals to LISP is (or was) POP-2. It has
everything that LISP has except that its statements are written in an
Algol-like form and don’t have any list structure internal form. Thus
POP-2 programs can produce other POP-2 programs only as charac-
ter strings. This makes a much sharper distinction between system
programmers and application programmers than in LISP. In LISP, for
example, anyone can make his own fancy macro recognizer and ex-
pander.

5. Microplanner is an attempt to make a higher level general purpose lan-
guage than LISP. The higher level involves both data (pattern match-
ing) and control (goal seeking and failure mechanisms). Unfortunately,
both proved inadequately general, and programmers were forced to
very elaborate constructions, to new languages like CONNIVER with
even more elaborate control features, and eventually many went back
to LISP.

One generic trouble seems to be that no-one adequately understands
pattern directed computation which always works very nicely on simple
examples, but which leads to over complicated systems when general-
ized. We can see this in LISP in certain macro expansion systems like
that of the LISP machine [WM78].

6. I should mention Prolog, but I don’t understand it well enough to
comment. 1

11999 note: The ideas of Prolog are similar to a subset of the ideas of Microplanner.
However, Prolog was designed systematically and has survived, while Microplanner didn’t.
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3 Improvements

Like most everything, LISP is subject to improvement. The various versions
of LISP have accumulated many barnacles with time, and these would have to
be scraped off before a definitive standardizable language could be achieved
- a worthwhile but long term goal. Meanwhile here are a few directions for
improvement. Some are purely operational and others have more conceptual
content.

1. Incorporating more standard functions into the language and rational-
izing the standard functions in the present versions.

Designers of programming languages often propose omitting from the
definition of the language facilities that can be defined within the lan-
guage on the grounds that the user can do it for himself. The result is
often that users cannot use each other’s programs, because each instal-
lation and user performs various common tasks in different ways. In so
far as programmers use local libraries without rewriting the functions,
they are using different languages if they use different local libraries.
Compatibility between users of LISP would be much enhanced if there
were more standard functions.

2. Syntax directed input and output.

A notation for representing symbolic information can be optimized from
three points of view: One can try to make it easy to write. One can try
to make it easy and pleasant to read. One can make easy to manipulate
with computer programs. Unfortunately, these desiderata are almost
always grossly incompatible. LISP owes most of its success to optimiz-
ing the third. LISP lists and S-expressions in which the car of an item
identifies its kind have proved most suitable as data for programming.
When the amount of input and output is small, users are inclined to
accept the inconvenience of entering the input and seeing the output as
lists or S-expressions. Otherwise they write read and print programs
of varying elaborateness. Input and output programs are often a large
part of the work and a major source of bugs. Moreover, input programs
often must detect and report errors in the syntax of input.

The key permanent idea of Prolog is that a certain subset of logic (Horn clauses) are
executable as programs doing backtracking search. It seems to me that this discovery has
as much permanent importance as the ideas behind Lisp.
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LISP would be much improved by standard facilities for syntax directed
input and output. Some years ago Lynn Quam implemented a system
that used the same syntax description for both input and output, but
this was rather constraining. Probably one wants different syntaxes
for input and output, and input syntaxes should specify ways of com-
plaining about errors. The idea is to provide standard facilities for a
programmer to describe correspondences between data in an external
medium and S-expressions, e.g. he should be able to say something like

(PLUS x . . . z)→ x + . . . + z,

(DIFFERENCE x y)→ x− y,

although I hold no brief for this particular notation.

3. Syntax directed computation in general.

It isn’t clear whether this would be a feature to be added to LISP or a
new language. However, it seems likely that both the functional form
of computation that LISP has now and syntax directed features are
wanted in one language.

4. LISP might benefit if we could find a way to finance and manage a
central agency that could keep libraries, make agreed on machine in-
dependent improvements, maintain a standard subset, and co-ordinate
pressure on computer manufacturers to develop and maintain adequate
LISPs on their machines. It shouldn’t get too powerful.2

4 Proving Correctness of LISP Programs

This can be done by taking Advantage of LISP’s Theoretical Foundation.
As soon as pure LISP took its present form, it became apparent that

properties of LISP functions should be provable by algebraic manipulation
together with an appropriate form of mathematical induction. This gave rise
to the goal of creating a mathematical theory of computation that would lead
to computer checked proofs [McC62] that programs meet their specifications.
Because LISP functions are functions, standard logical techniques weren’t im-
mediately applicable, although recursion induction [McC63] quickly became
available as an informal method. The methods of [Kle52] might have been

21999: Only the part about standardization happened.

6



adopted to proving properties of programs had anyone who understood them
well been properly motivated and understood the connections.

The first adequate formal method was based on Cartwright’s thesis [Car77],
which permits a LISP function definition such as

append[u, v]← if null u then v

else cons[car u, append[cdr u, v]]

to be replaced by a first order sentence

(∀u v)(append(u, v) = if null u then v

else cons(car u, append(cdr u, v)))

without first having to prove that the program terminates for any lists u and
v. The proof of termination has exactly the same form as any other inductive
proof. See also [CM79].

The Elephant formalism (McCarthy 1981 forthcoming)3 supplies a second
method appropriate for sequential LISP programs. Boyer and Moore [BM79]
provide proof finding as well as proof checking in a different formalism that
requires a proof that a function is total as part of the process of accepting
its definition.

I should say that I don’t regard the LCF methods as adequate, because
the “logic of computable functions” is too weak to fully specify programs.

These methods (used informally) have been succesfully taught as part of
the LISP course at Stanford and will be described in the textbook (McCarthy
and Talcott 1980).4 It is also quite feasible to check the proofs by machine
using Richard Weyhrauch’s FOL interactive proof-checker for first order logic,
but practical use requires a LISP system that integrates the proof checker
with the interpreter and compiler.56

31999: The 1981 ideas have been combined with other ideas, e.g. about speech acts,
and elaborated. See [McC96]. The Elephant idea referred to was to avoid data structures
by allowing direct reference to the past.

41999: That textbook didn’t appear, mainly because of a difference of opinion among
the authors about the most appropriate proof formalism

51999: FOL was succeeded in the Lisp course by Jussi Ketonen’s EKL prover, but the
proposed integrated system hasn’t happened.

61999: NQTHM (aka the Boyer-Moore prover) was used by Shankar when he taught the
course. This prover is designed to use induction to prove properties of total Lisp functions.
Using the Eval function of the logic and the representation of function definitions as
Sexpressions properties of partial functions can also be proved. NQTHM has evolved
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The ultimate goal of computer proof-checking is a system that will be used
by people without mathematical inclination simply because it leads more
quickly to programs without bugs. This requires further advances that will
make possible shorter proofs and also progress in writing the specifications
of programs.

Probably some parts of the specifications such as that the program termi-
nates are almost syntactic in their checkability. However, the specifications
of programs used in AI work require new ideas even to formulate. I think
that recent work in non-monotonic reasoning will be relevant here, because
the fact that an AI program works requires jumping to conclusions about the
world in which it operates.

While pure LISP and the simple form of the “program feature” are readily
formalized, many of the fancier features of the operational LISP systems such
as Interlisp, Maclisp and Lisp Machine LISP [WM78] are harder to formalize.
Some of them like FEXPRs require more mathematical research, but others
seem to me to be kludges and should be made more mathematically neat
both so that properties of programs that use them can be readily proved and
also to reduce ordinary bugs.

The following features of present LISP systems and proposed extensions
require new methods for correctness proofs:

1. Programs that involve re-entrant list structure. Those that don’t in-
volve rplaca and rplacd such as search and print programs are more
accessible than those that do. I have an induction method on finite
graphs that applies to them, but I don’t yet know how to treat rplaca,

etc. Induction on finite graphs also has applications to proving theo-
rems about flowchart programs.7

2. No systematic methods are known for formally stating and proving
properties of syntax directed computations.8

3. Programs that use macro expansions are in principle doable via ax-
iomatizations of the interpreter, but I don’t know of any actual formal

into ACL2 which supports a large applicative subset of Common Lisp and is programmed
almost entirely within that subset. [see http://www.cs.utexas.edu/users/moore/acl2/acl2-
doc.html]

71999: Ian Mason’s thesis[Mas86] gave some principles for reasoning about first-order
Lisp including rplacx.

81999: Maybe this is still the case.
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proofs.

4. No techniques exist for correctness proofs of programs involving lazy
evaluators.

5. Programs with functional arguments are in principle accessible by Dana
Scott’s methods, but the different kinds of functional arguments have
been treated only descriptively and informally.9

6. Probably the greatest obstacle to making proof-checking a useful tool is
our lack of knowledge of how to express the specifications of programs.
Many programs have useful partial specifications - they shouldn’t loop
or modify storage that doesn’t belong to them. A few satisfy algebraic
relations, and this includes compilers. However, programs that interact
with the world have specifications that involve assumptions about the
world. AI programs in general are difficult to specify; most likely their
very specification involves default and other non-monotonic reasoning.
(See [McC80].)

5 Mysteries and other Matters

1. Daniel Friedman and David Wise have argued that cons should not
evaluate its arguments and have shown that this allows certain infinite
list structures to be regarded as objects. Trouble is avoided, because
only as much of the infinite structure is created as is necessary to get the
answers to be printed. Exactly what domain of infinite list structures
is assumed is unclear to me. While they give interesting examples of
applications, it isn’t clear whether the proposed extension has practical
value.

2. Many people have proposed implementations of full lambda calculus.
This permits higher level functions, i.e. functions of functions of func-
tions etc., but allows only manipulations based on composition and
lambda conversions, not general manipulations of the symbolic form of

91999: A logic for reasoning about Lisp-Scheme-ML like programs with functions and
mutable data structures has been developed by Mason and Talcott [HMST95]. This logic
has a relatively complete axiomatization of primitives for mutable data as well as a variety
of induction principles and methods for proving properties of programs.
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functions. While conditional expressions are not directly provided, they
can be imitated by writing (as proposed by Dana Scott in an unpub-
lished note) true as (λx y.x), false as (λx y.y) and if p then a else b

as p(a)(b). Another neat idea of Scott’s (improved from one of Church)
is to identify the natural number n with the operation of taking the
(n+1)th element of a list. The mystery is whether extension to lambda
calculus has any practical significance, and the current best guess is no,
although the Scott’s notational idea suggests changing the notation of
LISP and writing 0 for car, 1 for cadr, 2 for caddr, etc.

3. Pure LISP would be much simpler conceptually if all list structure were
represented uniquely in memory. This can be done using a hash cons,
but then rplaca and friends don’t work. Can’t we somehow have the
best of both worlds?

4. It seems to me that LISP will probably be superseded for many pur-
poses by a language that does to LISP what LISP does to machine lan-
guage. Namely it will be a higher level language than LISP that, like
LISP and machine language, can refer to its own programs. (However,
a higher level language than LISP might have such a large declarative
component that its texts may not correspond to programs. If what re-
places the interpreter is smart enough, then the text written by a user
will be more like a declarative description of the facts about a goal and
the means available for attaining it than a program per se).10

An immediate problem is that both the kinds of abstract syntax presently
available and present pattern matching systems are awkward for ma-
nipulating expressions containing bound variables.

6 References

Lisp was first described in [McC60] and the first manual was [ML+66] the
first version of which appeared in 1962.11

101999: An example is Maude [Gro99, CDE+98, Wil97], a language based on Rewriting
Logic. In Maude, actions and effects are expressed in a declarative manner, and using
the reflective capability, Maude programs and computations can be represented, reasoned
about, modified and executed in Maude.

111999: I thank Carolyn Talcott for additonal references.
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