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Introduction

Fix a first-order language L and a class C of finite (yet arbitrarily large) L-structures.
How does a randomly selected C-structure of size n behave as n becomes infinitely
large?



Introduction: zero-one laws

Definition

A class C of first-order structures admits a zero-one law if, for any L-sentence φ, the
probability that a randomly selected C-structure of size n satisfies φ converges
asymptotically to zero or one.

Finite graphs, expressed in L = {E}, are a classical example.
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Introduction: logical limit laws

Definition

A class C of first-order L-structures admits a logical limit law if, for any sentence φ,
the probability that a randomly selected C-structure of size n satisfies φ converges
asymptotically (not necessarily to zero or one).

We distinguish between labeled and unlabeled limit laws.

• Labeled: count all possible structures

• Unlabeled: count structures up to isomorphism



Main Results

Theorem

Convex linear orders and layered permutations admit both unlabeled and labeled limit
laws. Compositions admit an unlabeled limit law.
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Convex linear orders

Definition

Let L be the language containing two binary relations: < and E . A convex linear
order is an L-structure where:

• < is a total order on points

• E is an equivalence relation

• x E z , x < y < z ⇒ z E x , y



Convex linear orders

E -classes︷ ︸︸ ︷
[• • •][•][• • ••]

<

From this point forward, we work over the domain [n] = {1, 2, . . . , n} for arbitrarily
large n. The convex linear order with one point will be denoted by •.
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Sum operations

Definition

Let C,D be convex linear orders.

• Ĉ is the convex linear order obtained by adding one point to the last class of C

• C⊕D is the convex linear order which places D <-after C.

[̂••][•] = [••][••]

[••][•]⊕ [•] = [••][•][•]



Sum operations
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Convex linear orders

Lemma

Every finite convex linear order of size n can be uniquely constructed by applying (̂−)
and/or −⊕ • to • repeatedly. This is done in n − 1 steps.

Proof

Proceed by induction.

• n = 1, trivial

• When n = 2, two possible cases: C ≃ • ⊕ • or C ≃ •̂
• In general: last class of C contains one or more points. Apply −⊕ • or (̂−)

respectively.
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Convex linear orders

[•]

[••] [•][•]

[• • •] [••][•] [•][••] [•][•][•]

...
...



Ehrenfeucht–Fräıssé games

• Ehrenfeucht–Fräıssé game on two structures: back-and-forth game between
players Spoiler and Duplicator in which corresponding points are marked on each
structure

• In game of length k between A and B, Duplicator has a winning strategy iff A
and B agree on all sentences of quantifier depth at most k . Write A ≡k B in this
case.



Equivalence lemmas

Lemma

Let M,N,M′,N′ be convex linear orders such that M ≡k N and M′ ≡k N′. The
following equivalences hold:

• M⊕M′ ≡k N⊕N′

• M̂ ≡k N̂



Equivalence lemmas

Lemma

For a convex linear order M and k ∈ N, there exists ℓ ∈ N such that for all s, t > ℓ,⊕
s

M ≡k

⊕
t

M



Extension of sum operations

Extend sum operations to equivalence classes:

C ⊕ • := [M⊕ •]≡k

Ĉ :=
[
M̂

]
≡k



The limit law

General idea:

• For a first-order sentence φ having quantifier rank k, construct a Markov chain Mφ

• States of Mφ are ≡k -classes

• Probability of a randomly-selected structure of size n satisfying φ is probability
that Mφ is in a state satisfying φ after n transitions

• Finite linearly-ordered structures are rigid, so no distinction between labeled and
unlabeled limit laws in this case



Constructing a Markov chain

Definition

A Markov chain is fully aperiodic if there do not exist disjoint sets of M-states
P0,P1, . . . ,Pd−1, d > 1 such that, for every state in Pi , the chain M transitions to a
state in Pi+1 with probability 1 (and Pd−1 transitions to P0).

Lemma

Let M be a finite, fully aperiodic Markov chain with initial state S , and let
Prn−1(S ,Q) denote the probability that M is in state Q after n − 1 steps. For any
choice of Q, limn→∞ Prn−1(S ,Q) converges.



Constructing a Markov chain

Suppose φ is an L-sentence having quantifier depth k . We construct a Markov chain
Mφ as follows:

• Starting state : [•]≡k

• From any ≡k -class C , there are two possible transitions: to C ⊕ • or Ĉ

• Each transition probability is 1/2



The limit law

Theorem

Mφ is fully aperiodic for any first-order sentence φ.

Proof

Suppose it were not.

• There would exist disjoint sets of Mφ-states P0,P1, . . .Pd−1 forming a cycle

• For any Q ∈ P0, Q ⊕ i• is in P0 iff d | i
• By earlier equivalence lemmas, Q ⊕ i• ≡k Q ⊕ (i + 1)• for sufficiently large i



The limit law

Theorem

Convex linear orders admit a logical limit law.

Proof

Fix a first-order sentence φ, and consider Mφ.

• For every state of Mφ, either every structure in the state satisfies φ or no
structures do

• Let Sφ denote the set of states in Mφ for which all structures in that state satisfy
φ.

• (̂−) and −⊕ • are well-defined on ≡k -classes. Hence, moving n − 1 steps in Mφ

is equivalent to starting with any structure in the current state, applying (̂−) or
−⊕ • as needed, and taking the ≡k -class.



The limit law

Proof (continued)

• The probability that after n steps, Mφ is in a state of Sφ equals probability that a
uniformly randomly selected structure of size n satisfies φ

• Suffices to show that limn→∞
∑

Q∈Sφ Prn−1(•,Q) converges, which follows from
aperiodicity
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Transfer lemma

Fix languages L0,L1 and classes C0, C1 of L0,L1 structures respectively.

Lemma

Let f be a map from the set of L0-structures to the set of L1-structures, and g a map
from the set of L0-sentences to the set of L1-sentences such that, for any C0-structure
M and L0-sentence φ:

1 M |= φ ⇐⇒ f (M) |= g(φ)

2 f is bijective between structures of size n for all n

3 The class C1 admits a limit law

Then, C0 also admits a limit law.



Transfer lemma

Proof

Let φ be an L0 sentence and a0 the number of size n structures in C0 satisfying φ.
Likewise, let a1 be the number of size n structures in C1 satisfying g(φ). For a
randomly selected C0-structure M (of size n),

Pr(M |= φ) =
a0
|C0|

Pr(f (M) |= g(φ)) =
a1
|C1|

From bijectivity of f , |C0| = |C1|, and by (1), a1 = a0. Thus, the probabilities are equal
for any φ, with the second one convergent. This gives a limit law for C0.



Uniform interdefinability

Definition

Classes C0, C1 of structures over a common finite domain are uniformly interdefinable
if there exists a bijection on structures fI : C0 → C1, along with formulae φR0,i

, φR1,i
for

each relation R0,i in L0 and R1,i in L1 such that, for each M0 in C0 and M1 in C1:
• M0 |= R0,i (x̄) ⇐⇒ fI (M0) |= φR0,i

(x̄)

• M1 |= R1,i (x̄) ⇐⇒ f −1
I (M1) |= φR1,i

(x̄)



Uniform interdefinability

Theorem

Let C0, C1 be uniformly interdefinable classes of L0, L1 structures. If C1 admits a
logical limit law, C0 admits one as well.

Proof

Apply the transfer lemma. Take the transfer maps f , g to be:

• f = fI
• g is the map sending an L0-sentence to the L1-sentence with each occurrence of

R0,i replaced with φR0,i
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Layered permutations

• Permutations can be viewed as structures in the language L = {<1, <2} with two
linear orders. The order <1 gives the unpermuted order of the points, and <2

describes the points after applying the permutation.

• The class of all permutations cannot admit a limit law, but certain subclasses can

• Blocks are maximal subsets which are monotone <1/<2-intervals

• A layered permutation is composed of increasing blocks, each containing a
decreasing permutation



Layered permutations

•

•

•

•
•

•

<1

<2



Interdefinability with convex linear orders

Lemma

Layered permutations and convex linear orders are uniformly interdefinable.

Proof

Define fI to be the map taking blocks of a layered permutation to classes of a convex
linear order, and points in an order-preserving manner. The relations <1 and <2 are
rewritten as:

• φ<1 : a <1 b ⇝ a < b

• φ<2 : a <2 b ⇝ (a E b ∧ b < a) ∨ (¬(a E b) ∧ a < b)



Interdefinability with convex linear orders

•
•

•

• • •

M0

fI (M0)

fI



The limit law

Theorem

Layered permutations admit a logical limit law.

Proof

Layered permutations are uniformly interdefinable with convex linear orders. Because
convex linear orders admit a logical limit law, layered permutations admit one as
well.
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Fractured orders

• Let L0 = {E , <} be the language of convex linear orders

• Define L1 = {E ,≺1,≺2}
• Fractured orders take a convex linear order < and break it into two parts: ≺1

between E -classes, and ≺2 within E -classes.



Fractured orders

Definition

A fractured order is an L1-structure where:

1 ≺1, ≺2 are partial orders

2 E is an equivalence relation

3 Distinct points a, b are ≺1-comparable iff they are not E -related

4 Distinct points a, b are ≺2-comparable iff they are E -related

5 a E a′, a ≺1 b ⇒ a′ ≺1 b (convexity)

Denote the class of all finite fractured orders by F .



Fractured orders

Theorem

Fractured orders and convex linear orders are uniformly interdefinable.

Proof

Define fI : F → C0 such that:

• M1 |= a E b ⇐⇒ fI (M1) |= a E b

• M1 |= a ≺1 b ⇐⇒ fI (M1) |= ¬a E b ∧ a < b

• M1 |= a ≺2 b ⇐⇒ fI (M1) |= a E b ∧ a < b

This map satisfies the requirements for uniform interdefinability.



Reducts and limit laws

Lemma

Let L be a language and L′ ⊂ L. Given a class C of L-structures which admits a
logical limit law, any class C′ of L′-structures which expand uniquely to C-structures
also admits a logical limit law.

Proof

Construct the transfer maps f and g from earlier:

• f is taken to be the map sending a structure in C′ to its unique expansion in C
• This expansion is unique, hence f is bijective on structures of size n for all n

• g is given by the identity map on formulas
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Compositions

• Compositions are structures in the reduct L2 ⊂ L1 given by L2 = {E ,≺1}
• Order defined on equivalence classes, but not on points within each class



Compositions

Lemma

Every composition expands uniquely to a fractured order, up to isomorphism.

Proof

There is a unique way to linearly order each E -class individually. Because ordering
these classes determines ≺2, there is a unique way to define ≺2 on any composition,
expanding it to a fractured order.



Compositions

Theorem

The class of compositions admit an unlabeled logical limit law.

Proof

The language of compositions is a reduct of the language of fractured orders, and
every composition expands uniquely to a fractured order. The class of fractured orders
admits a logical limit law, therefore, by the previous lemma, compositions admit a limit
law as well.
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Questions

• Do compositions admit a labeled limit law?
• Which other classes of permutations admit a limit law?

• 231-avoiding permutations [1]
• Random permutations following a Mallows distribution [3]

• Can further analogues of the ⊕ operator be extended to show limit laws for other
classes of ordered structures?
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