summaryrefslogtreecommitdiff
path: root/html/jpgraph/jpgraph_contour.php
diff options
context:
space:
mode:
Diffstat (limited to 'html/jpgraph/jpgraph_contour.php')
-rw-r--r--html/jpgraph/jpgraph_contour.php587
1 files changed, 587 insertions, 0 deletions
diff --git a/html/jpgraph/jpgraph_contour.php b/html/jpgraph/jpgraph_contour.php
new file mode 100644
index 0000000..760989e
--- /dev/null
+++ b/html/jpgraph/jpgraph_contour.php
@@ -0,0 +1,587 @@
+<?php
+/*=======================================================================
+// File: JPGRAPH_CONTOUR.PHP
+// Description: Contour plot
+// Created: 2009-03-08
+// Ver: $Id: jpgraph_contour.php 1870 2009-09-29 04:24:18Z ljp $
+//
+// Copyright (c) Asial Corporation. All rights reserved.
+//========================================================================
+*/
+require_once('jpgraph_meshinterpolate.inc.php');
+define('HORIZ_EDGE',0);
+define('VERT_EDGE',1);
+
+/**
+ * This class encapsulates the core contour plot algorithm. It will find the path
+ * of the specified isobars in the data matrix specified. It is assumed that the
+ * data matrix models an equspaced X-Y mesh of datavalues corresponding to the Z
+ * values.
+ *
+ */
+class Contour {
+
+ private $dataPoints = array();
+ private $nbrCols=0,$nbrRows=0;
+ private $horizEdges = array(), $vertEdges=array();
+ private $isobarValues = array();
+ private $stack = null;
+ private $isobarCoord = array();
+ private $nbrIsobars = 10, $isobarColors = array();
+ private $invert = true;
+ private $highcontrast = false, $highcontrastbw = false;
+
+ /**
+ * Create a new contour level "algorithm machine".
+ * @param $aMatrix The values to find the contour from
+ * @param $aIsobars Mixed. If integer it determines the number of isobars to be used. The levels are determined
+ * automatically as equdistance between the min and max value of the matrice.
+ * If $aIsobars is an array then this is interpretated as an array of values to be used as isobars in the
+ * contour plot.
+ * @return an instance of the contour algorithm
+ */
+ function __construct($aMatrix,$aIsobars=10, $aColors=null) {
+
+ $this->nbrRows = count($aMatrix);
+ $this->nbrCols = count($aMatrix[0]);
+ $this->dataPoints = $aMatrix;
+
+ if( is_array($aIsobars) ) {
+ // use the isobar values supplied
+ $this->nbrIsobars = count($aIsobars);
+ $this->isobarValues = $aIsobars;
+ }
+ else {
+ // Determine the isobar values automatically
+ $this->nbrIsobars = $aIsobars;
+ list($min,$max) = $this->getMinMaxVal();
+ $stepSize = ($max-$min) / $aIsobars ;
+ $isobar = $min+$stepSize/2;
+ for ($i = 0; $i < $aIsobars; $i++) {
+ $this->isobarValues[$i] = $isobar;
+ $isobar += $stepSize;
+ }
+ }
+
+ if( $aColors !== null && count($aColors) > 0 ) {
+
+ if( !is_array($aColors) ) {
+ JpGraphError::RaiseL(28001);
+ //'Third argument to Contour must be an array of colors.'
+ }
+
+ if( count($aColors) != count($this->isobarValues) ) {
+ JpGraphError::RaiseL(28002);
+ //'Number of colors must equal the number of isobar lines specified';
+ }
+
+ $this->isobarColors = $aColors;
+ }
+ }
+
+ /**
+ * Flip the plot around the Y-coordinate. This has the same affect as flipping the input
+ * data matrice
+ *
+ * @param $aFlg If true the the vertice in input data matrice position (0,0) corresponds to the top left
+ * corner of teh plot otherwise it will correspond to the bottom left corner (a horizontal flip)
+ */
+ function SetInvert($aFlg=true) {
+ $this->invert = $aFlg;
+ }
+
+ /**
+ * Find the min and max values in the data matrice
+ *
+ * @return array(min_value,max_value)
+ */
+ function getMinMaxVal() {
+ $min = $this->dataPoints[0][0];
+ $max = $this->dataPoints[0][0];
+ for ($i = 0; $i < $this->nbrRows; $i++) {
+ if( ($mi=min($this->dataPoints[$i])) < $min ) $min = $mi;
+ if( ($ma=max($this->dataPoints[$i])) > $max ) $max = $ma;
+ }
+ return array($min,$max);
+ }
+
+ /**
+ * Reset the two matrices that keeps track on where the isobars crosses the
+ * horizontal and vertical edges
+ */
+ function resetEdgeMatrices() {
+ for ($k = 0; $k < 2; $k++) {
+ for ($i = 0; $i <= $this->nbrRows; $i++) {
+ for ($j = 0; $j <= $this->nbrCols; $j++) {
+ $this->edges[$k][$i][$j] = false;
+ }
+ }
+ }
+ }
+
+ /**
+ * Determine if the specified isobar crosses the horizontal edge specified by its row and column
+ *
+ * @param $aRow Row index of edge to be checked
+ * @param $aCol Col index of edge to be checked
+ * @param $aIsobar Isobar value
+ * @return true if the isobar is crossing this edge
+ */
+ function isobarHCrossing($aRow,$aCol,$aIsobar) {
+
+ if( $aCol >= $this->nbrCols-1 ) {
+ JpGraphError::RaiseL(28003,$aCol);
+ //'ContourPlot Internal Error: isobarHCrossing: Coloumn index too large (%d)'
+ }
+ if( $aRow >= $this->nbrRows ) {
+ JpGraphError::RaiseL(28004,$aRow);
+ //'ContourPlot Internal Error: isobarHCrossing: Row index too large (%d)'
+ }
+
+ $v1 = $this->dataPoints[$aRow][$aCol];
+ $v2 = $this->dataPoints[$aRow][$aCol+1];
+
+ return ($aIsobar-$v1)*($aIsobar-$v2) < 0 ;
+
+ }
+
+ /**
+ * Determine if the specified isobar crosses the vertical edge specified by its row and column
+ *
+ * @param $aRow Row index of edge to be checked
+ * @param $aCol Col index of edge to be checked
+ * @param $aIsobar Isobar value
+ * @return true if the isobar is crossing this edge
+ */
+ function isobarVCrossing($aRow,$aCol,$aIsobar) {
+
+ if( $aRow >= $this->nbrRows-1) {
+ JpGraphError::RaiseL(28005,$aRow);
+ //'isobarVCrossing: Row index too large
+ }
+ if( $aCol >= $this->nbrCols ) {
+ JpGraphError::RaiseL(28006,$aCol);
+ //'isobarVCrossing: Col index too large
+ }
+
+ $v1 = $this->dataPoints[$aRow][$aCol];
+ $v2 = $this->dataPoints[$aRow+1][$aCol];
+
+ return ($aIsobar-$v1)*($aIsobar-$v2) < 0 ;
+
+ }
+
+ /**
+ * Determine all edges, horizontal and vertical that the specified isobar crosses. The crossings
+ * are recorded in the two edge matrices.
+ *
+ * @param $aIsobar The value of the isobar to be checked
+ */
+ function determineIsobarEdgeCrossings($aIsobar) {
+
+ $ib = $this->isobarValues[$aIsobar];
+
+ for ($i = 0; $i < $this->nbrRows-1; $i++) {
+ for ($j = 0; $j < $this->nbrCols-1; $j++) {
+ $this->edges[HORIZ_EDGE][$i][$j] = $this->isobarHCrossing($i,$j,$ib);
+ $this->edges[VERT_EDGE][$i][$j] = $this->isobarVCrossing($i,$j,$ib);
+ }
+ }
+
+ // We now have the bottom and rightmost edges unsearched
+ for ($i = 0; $i < $this->nbrRows-1; $i++) {
+ $this->edges[VERT_EDGE][$i][$j] = $this->isobarVCrossing($i,$this->nbrCols-1,$ib);
+ }
+ for ($j = 0; $j < $this->nbrCols-1; $j++) {
+ $this->edges[HORIZ_EDGE][$i][$j] = $this->isobarHCrossing($this->nbrRows-1,$j,$ib);
+ }
+
+ }
+
+ /**
+ * Return the normalized coordinates for the crossing of the specified edge with the specified
+ * isobar- The crossing is simpy detrmined with a linear interpolation between the two vertices
+ * on each side of the edge and the value of the isobar
+ *
+ * @param $aRow Row of edge
+ * @param $aCol Column of edge
+ * @param $aEdgeDir Determine if this is a horizontal or vertical edge
+ * @param $ib The isobar value
+ * @return unknown_type
+ */
+ function getCrossingCoord($aRow,$aCol,$aEdgeDir,$aIsobarVal) {
+
+ // In order to avoid numerical problem when two vertices are very close
+ // we have to check and avoid dividing by close to zero denumerator.
+ if( $aEdgeDir == HORIZ_EDGE ) {
+ $d = abs($this->dataPoints[$aRow][$aCol] - $this->dataPoints[$aRow][$aCol+1]);
+ if( $d > 0.001 ) {
+ $xcoord = $aCol + abs($aIsobarVal - $this->dataPoints[$aRow][$aCol]) / $d;
+ }
+ else {
+ $xcoord = $aCol;
+ }
+ $ycoord = $aRow;
+ }
+ else {
+ $d = abs($this->dataPoints[$aRow][$aCol] - $this->dataPoints[$aRow+1][$aCol]);
+ if( $d > 0.001 ) {
+ $ycoord = $aRow + abs($aIsobarVal - $this->dataPoints[$aRow][$aCol]) / $d;
+ }
+ else {
+ $ycoord = $aRow;
+ }
+ $xcoord = $aCol;
+ }
+ if( $this->invert ) {
+ $ycoord = $this->nbrRows-1 - $ycoord;
+ }
+ return array($xcoord,$ycoord);
+
+ }
+
+ /**
+ * In order to avoid all kinds of unpleasent extra checks and complex boundary
+ * controls for the degenerated case where the contour levels exactly crosses
+ * one of the vertices we add a very small delta (0.1%) to the data point value.
+ * This has no visible affect but it makes the code sooooo much cleaner.
+ *
+ */
+ function adjustDataPointValues() {
+
+ $ni = count($this->isobarValues);
+ for ($k = 0; $k < $ni; $k++) {
+ $ib = $this->isobarValues[$k];
+ for ($row = 0 ; $row < $this->nbrRows-1; ++$row) {
+ for ($col = 0 ; $col < $this->nbrCols-1; ++$col ) {
+ if( abs($this->dataPoints[$row][$col] - $ib) < 0.0001 ) {
+ $this->dataPoints[$row][$col] += $this->dataPoints[$row][$col]*0.001;
+ }
+ }
+ }
+ }
+
+ }
+
+ /**
+ * @param $aFlg
+ * @param $aBW
+ * @return unknown_type
+ */
+ function UseHighContrastColor($aFlg=true,$aBW=false) {
+ $this->highcontrast = $aFlg;
+ $this->highcontrastbw = $aBW;
+ }
+
+ /**
+ * Calculate suitable colors for each defined isobar
+ *
+ */
+ function CalculateColors() {
+ if ( $this->highcontrast ) {
+ if ( $this->highcontrastbw ) {
+ for ($ib = 0; $ib < $this->nbrIsobars; $ib++) {
+ $this->isobarColors[$ib] = 'black';
+ }
+ }
+ else {
+ // Use only blue/red scale
+ $step = round(255/($this->nbrIsobars-1));
+ for ($ib = 0; $ib < $this->nbrIsobars; $ib++) {
+ $this->isobarColors[$ib] = array($ib*$step, 50, 255-$ib*$step);
+ }
+ }
+ }
+ else {
+ $n = $this->nbrIsobars;
+ $v = 0; $step = 1 / ($this->nbrIsobars-1);
+ for ($ib = 0; $ib < $this->nbrIsobars; $ib++) {
+ $this->isobarColors[$ib] = RGB::GetSpectrum($v);
+ $v += $step;
+ }
+ }
+ }
+
+ /**
+ * This is where the main work is done. For each isobar the crossing of the edges are determined
+ * and then each cell is analyzed to find the 0, 2 or 4 crossings. Then the normalized coordinate
+ * for the crossings are determined and pushed on to the isobar stack. When the method is finished
+ * the $isobarCoord will hold one arrayfor each isobar where all the line segments that makes
+ * up the contour plot are stored.
+ *
+ * @return array( $isobarCoord, $isobarValues, $isobarColors )
+ */
+ function getIsobars() {
+
+ $this->adjustDataPointValues();
+
+ for ($isobar = 0; $isobar < $this->nbrIsobars; $isobar++) {
+
+ $ib = $this->isobarValues[$isobar];
+ $this->resetEdgeMatrices();
+ $this->determineIsobarEdgeCrossings($isobar);
+ $this->isobarCoord[$isobar] = array();
+
+ $ncoord = 0;
+
+ for ($row = 0 ; $row < $this->nbrRows-1; ++$row) {
+ for ($col = 0 ; $col < $this->nbrCols-1; ++$col ) {
+
+ // Find out how many crossings around the edges
+ $n = 0;
+ if ( $this->edges[HORIZ_EDGE][$row][$col] ) $neigh[$n++] = array($row, $col, HORIZ_EDGE);
+ if ( $this->edges[HORIZ_EDGE][$row+1][$col] ) $neigh[$n++] = array($row+1,$col, HORIZ_EDGE);
+ if ( $this->edges[VERT_EDGE][$row][$col] ) $neigh[$n++] = array($row, $col, VERT_EDGE);
+ if ( $this->edges[VERT_EDGE][$row][$col+1] ) $neigh[$n++] = array($row, $col+1,VERT_EDGE);
+
+ if ( $n == 2 ) {
+ $n1=0; $n2=1;
+ $this->isobarCoord[$isobar][$ncoord++] = array(
+ $this->getCrossingCoord($neigh[$n1][0],$neigh[$n1][1],$neigh[$n1][2],$ib),
+ $this->getCrossingCoord($neigh[$n2][0],$neigh[$n2][1],$neigh[$n2][2],$ib) );
+ }
+ elseif ( $n == 4 ) {
+ // We must determine how to connect the edges either northwest->southeast or
+ // northeast->southwest. We do that by calculating the imaginary middle value of
+ // the cell by averaging the for corners. This will compared with the value of the
+ // top left corner will help determine the orientation of the ridge/creek
+ $midval = ($this->dataPoints[$row][$col]+$this->dataPoints[$row][$col+1]+$this->dataPoints[$row+1][$col]+$this->dataPoints[$row+1][$col+1])/4;
+ $v = $this->dataPoints[$row][$col];
+ if( $midval == $ib ) {
+ // Orientation "+"
+ $n1=0; $n2=1; $n3=2; $n4=3;
+ } elseif ( ($midval > $ib && $v > $ib) || ($midval < $ib && $v < $ib) ) {
+ // Orientation of ridge/valley = "\"
+ $n1=0; $n2=3; $n3=2; $n4=1;
+ } elseif ( ($midval > $ib && $v < $ib) || ($midval < $ib && $v > $ib) ) {
+ // Orientation of ridge/valley = "/"
+ $n1=0; $n2=2; $n3=3; $n4=1;
+ }
+
+ $this->isobarCoord[$isobar][$ncoord++] = array(
+ $this->getCrossingCoord($neigh[$n1][0],$neigh[$n1][1],$neigh[$n1][2],$ib),
+ $this->getCrossingCoord($neigh[$n2][0],$neigh[$n2][1],$neigh[$n2][2],$ib) );
+
+ $this->isobarCoord[$isobar][$ncoord++] = array(
+ $this->getCrossingCoord($neigh[$n3][0],$neigh[$n3][1],$neigh[$n3][2],$ib),
+ $this->getCrossingCoord($neigh[$n4][0],$neigh[$n4][1],$neigh[$n4][2],$ib) );
+
+ }
+ }
+ }
+ }
+
+ if( count($this->isobarColors) == 0 ) {
+ // No manually specified colors. Calculate them automatically.
+ $this->CalculateColors();
+ }
+ return array( $this->isobarCoord, $this->isobarValues, $this->isobarColors );
+ }
+}
+
+
+/**
+ * This class represent a plotting of a contour outline of data given as a X-Y matrice
+ *
+ */
+class ContourPlot extends Plot {
+
+ private $contour, $contourCoord, $contourVal, $contourColor;
+ private $nbrCountours = 0 ;
+ private $dataMatrix = array();
+ private $invertLegend = false;
+ private $interpFactor = 1;
+ private $flipData = false;
+ private $isobar = 10;
+ private $showLegend = false;
+ private $highcontrast = false, $highcontrastbw = false;
+ private $manualIsobarColors = array();
+
+ /**
+ * Construct a contour plotting algorithm. The end result of the algorithm is a sequence of
+ * line segments for each isobar given as two vertices.
+ *
+ * @param $aDataMatrix The Z-data to be used
+ * @param $aIsobar A mixed variable, if it is an integer then this specified the number of isobars to use.
+ * The values of the isobars are automatically detrmined to be equ-spaced between the min/max value of the
+ * data. If it is an array then it explicetely gives the isobar values
+ * @param $aInvert By default the matrice with row index 0 corresponds to Y-value 0, i.e. in the bottom of
+ * the plot. If this argument is true then the row with the highest index in the matrice corresponds to
+ * Y-value 0. In affect flipping the matrice around an imaginary horizontal axis.
+ * @param $aHighContrast Use high contrast colors (blue/red:ish)
+ * @param $aHighContrastBW Use only black colors for contours
+ * @return an instance of the contour plot algorithm
+ */
+ function __construct($aDataMatrix, $aIsobar=10, $aFactor=1, $aInvert=false, $aIsobarColors=array()) {
+
+ $this->dataMatrix = $aDataMatrix;
+ $this->flipData = $aInvert;
+ $this->isobar = $aIsobar;
+ $this->interpFactor = $aFactor;
+
+ if ( $this->interpFactor > 1 ) {
+
+ if( $this->interpFactor > 5 ) {
+ JpGraphError::RaiseL(28007);// ContourPlot interpolation factor is too large (>5)
+ }
+
+ $ip = new MeshInterpolate();
+ $this->dataMatrix = $ip->Linear($this->dataMatrix, $this->interpFactor);
+ }
+
+ $this->contour = new Contour($this->dataMatrix,$this->isobar,$aIsobarColors);
+
+ if( is_array($aIsobar) )
+ $this->nbrContours = count($aIsobar);
+ else
+ $this->nbrContours = $aIsobar;
+ }
+
+
+ /**
+ * Flipe the data around the center
+ *
+ * @param $aFlg
+ *
+ */
+ function SetInvert($aFlg=true) {
+ $this->flipData = $aFlg;
+ }
+
+ /**
+ * Set the colors for the isobar lines
+ *
+ * @param $aColorArray
+ *
+ */
+ function SetIsobarColors($aColorArray) {
+ $this->manualIsobarColors = $aColorArray;
+ }
+
+ /**
+ * Show the legend
+ *
+ * @param $aFlg true if the legend should be shown
+ *
+ */
+ function ShowLegend($aFlg=true) {
+ $this->showLegend = $aFlg;
+ }
+
+
+ /**
+ * @param $aFlg true if the legend should start with the lowest isobar on top
+ * @return unknown_type
+ */
+ function Invertlegend($aFlg=true) {
+ $this->invertLegend = $aFlg;
+ }
+
+ /* Internal method. Give the min value to be used for the scaling
+ *
+ */
+ function Min() {
+ return array(0,0);
+ }
+
+ /* Internal method. Give the max value to be used for the scaling
+ *
+ */
+ function Max() {
+ return array(count($this->dataMatrix[0])-1,count($this->dataMatrix)-1);
+ }
+
+ /**
+ * Internal ramewrok method to setup the legend to be used for this plot.
+ * @param $aGraph The parent graph class
+ */
+ function Legend($aGraph) {
+
+ if( ! $this->showLegend )
+ return;
+
+ if( $this->invertLegend ) {
+ for ($i = 0; $i < $this->nbrContours; $i++) {
+ $aGraph->legend->Add(sprintf('%.1f',$this->contourVal[$i]), $this->contourColor[$i]);
+ }
+ }
+ else {
+ for ($i = $this->nbrContours-1; $i >= 0 ; $i--) {
+ $aGraph->legend->Add(sprintf('%.1f',$this->contourVal[$i]), $this->contourColor[$i]);
+ }
+ }
+ }
+
+
+ /**
+ * Framework function which gets called before the Stroke() method is called
+ *
+ * @see Plot#PreScaleSetup($aGraph)
+ *
+ */
+ function PreScaleSetup($aGraph) {
+ $xn = count($this->dataMatrix[0])-1;
+ $yn = count($this->dataMatrix)-1;
+
+ $aGraph->xaxis->scale->Update($aGraph->img,0,$xn);
+ $aGraph->yaxis->scale->Update($aGraph->img,0,$yn);
+
+ $this->contour->SetInvert($this->flipData);
+ list($this->contourCoord,$this->contourVal,$this->contourColor) = $this->contour->getIsobars();
+ }
+
+ /**
+ * Use high contrast color schema
+ *
+ * @param $aFlg True, to use high contrast color
+ * @param $aBW True, Use only black and white color schema
+ */
+ function UseHighContrastColor($aFlg=true,$aBW=false) {
+ $this->highcontrast = $aFlg;
+ $this->highcontrastbw = $aBW;
+ $this->contour->UseHighContrastColor($this->highcontrast,$this->highcontrastbw);
+ }
+
+ /**
+ * Internal method. Stroke the contour plot to the graph
+ *
+ * @param $img Image handler
+ * @param $xscale Instance of the xscale to use
+ * @param $yscale Instance of the yscale to use
+ */
+ function Stroke($img,$xscale,$yscale) {
+
+ if( count($this->manualIsobarColors) > 0 ) {
+ $this->contourColor = $this->manualIsobarColors;
+ if( count($this->manualIsobarColors) != $this->nbrContours ) {
+ JpGraphError::RaiseL(28002);
+ }
+ }
+
+ $img->SetLineWeight($this->line_weight);
+
+ for ($c = 0; $c < $this->nbrContours; $c++) {
+
+ $img->SetColor( $this->contourColor[$c] );
+
+ $n = count($this->contourCoord[$c]);
+ $i = 0;
+ while ( $i < $n ) {
+ list($x1,$y1) = $this->contourCoord[$c][$i][0];
+ $x1t = $xscale->Translate($x1);
+ $y1t = $yscale->Translate($y1);
+
+ list($x2,$y2) = $this->contourCoord[$c][$i++][1];
+ $x2t = $xscale->Translate($x2);
+ $y2t = $yscale->Translate($y2);
+
+ $img->Line($x1t,$y1t,$x2t,$y2t);
+ }
+
+ }
+ }
+
+}
+
+// EOF
+?>