diff options
Diffstat (limited to 'html/jpgraph/jpgraph_pie3d.php')
-rw-r--r-- | html/jpgraph/jpgraph_pie3d.php | 933 |
1 files changed, 0 insertions, 933 deletions
diff --git a/html/jpgraph/jpgraph_pie3d.php b/html/jpgraph/jpgraph_pie3d.php deleted file mode 100644 index 52b8631..0000000 --- a/html/jpgraph/jpgraph_pie3d.php +++ /dev/null @@ -1,933 +0,0 @@ -<?php -/*======================================================================= - // File: JPGRAPH_PIE3D.PHP - // Description: 3D Pie plot extension for JpGraph - // Created: 2001-03-24 - // Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $ - // - // Copyright (c) Asial Corporation. All rights reserved. - //======================================================================== - */ - -//=================================================== -// CLASS PiePlot3D -// Description: Plots a 3D pie with a specified projection -// angle between 20 and 70 degrees. -//=================================================== -class PiePlot3D extends PiePlot { - private $labelhintcolor="red",$showlabelhint=true; - private $angle=50; - private $edgecolor="", $edgeweight=1; - private $iThickness=false; - - //--------------- - // CONSTRUCTOR - function __construct($data) { - $this->radius = 0.5; - $this->data = $data; - $this->title = new Text(""); - $this->title->SetFont(FF_FONT1,FS_BOLD); - $this->value = new DisplayValue(); - $this->value->Show(); - $this->value->SetFormat('%.0f%%'); - } - - //--------------- - // PUBLIC METHODS - - // Set label arrays - function SetLegends($aLegend) { - $this->legends = array_reverse(array_slice($aLegend,0,count($this->data))); - } - - function SetSliceColors($aColors) { - $this->setslicecolors = $aColors; - } - - function Legend($aGraph) { - parent::Legend($aGraph); - $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol); - } - - function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') { - $this->csimtargets = $aTargets; - $this->csimwintargets = $aWinTargets; - $this->csimalts = $aAlts; - } - - // Should the slices be separated by a line? If color is specified as "" no line - // will be used to separate pie slices. - function SetEdge($aColor='black',$aWeight=1) { - $this->edgecolor = $aColor; - $this->edgeweight = $aWeight; - } - - // Specify projection angle for 3D in degrees - // Must be between 20 and 70 degrees - function SetAngle($a) { - if( $a<5 || $a>90 ) { - JpGraphError::RaiseL(14002); - //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees."); - } - else { - $this->angle = $a; - } - } - - function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle - - $sa *= M_PI/180; - $ea *= M_PI/180; - - //add coordinates of the centre to the map - $coords = "$xc, $yc"; - - //add coordinates of the first point on the arc to the map - $xp = floor($width*cos($sa)/2+$xc); - $yp = floor($yc-$height*sin($sa)/2); - $coords.= ", $xp, $yp"; - - //If on the front half, add the thickness offset - if ($sa >= M_PI && $sa <= 2*M_PI*1.01) { - $yp = floor($yp+$thick); - $coords.= ", $xp, $yp"; - } - - //add coordinates every 0.2 radians - $a=$sa+0.2; - while ($a<$ea) { - $xp = floor($width*cos($a)/2+$xc); - if ($a >= M_PI && $a <= 2*M_PI*1.01) { - $yp = floor($yc-($height*sin($a)/2)+$thick); - } else { - $yp = floor($yc-$height*sin($a)/2); - } - $coords.= ", $xp, $yp"; - $a += 0.2; - } - - //Add the last point on the arc - $xp = floor($width*cos($ea)/2+$xc); - $yp = floor($yc-$height*sin($ea)/2); - - - if ($ea >= M_PI && $ea <= 2*M_PI*1.01) { - $coords.= ", $xp, ".floor($yp+$thick); - } - $coords.= ", $xp, $yp"; - $alt=''; - - if( !empty($this->csimtargets[$i]) ) { - $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\""; - - if( !empty($this->csimwintargets[$i]) ) { - $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" "; - } - - if( !empty($this->csimalts[$i]) ) { - $tmp=sprintf($this->csimalts[$i],$this->data[$i]); - $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" "; - } - $this->csimareas .= " />\n"; - } - - } - - function SetLabels($aLabels,$aLblPosAdj="auto") { - $this->labels = $aLabels; - $this->ilabelposadj=$aLblPosAdj; - } - - - // Distance from the pie to the labels - function SetLabelMargin($m) { - $this->value->SetMargin($m); - } - - // Show a thin line from the pie to the label for a specific slice - function ShowLabelHint($f=true) { - $this->showlabelhint=$f; - } - - // Set color of hint line to label for each slice - function SetLabelHintColor($c) { - $this->labelhintcolor=$c; - } - - function SetHeight($aHeight) { - $this->iThickness = $aHeight; - } - - - // Normalize Angle between 0-360 - function NormAngle($a) { - // Normalize anle to 0 to 2M_PI - // - if( $a > 0 ) { - while($a > 360) $a -= 360; - } - else { - while($a < 0) $a += 360; - } - if( $a < 0 ) - $a = 360 + $a; - - if( $a == 360 ) $a=0; - return $a; - } - - - - // Draw one 3D pie slice at position ($xc,$yc) with height $z - function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) { - - // Due to the way the 3D Pie algorithm works we are - // guaranteed that any slice we get into this method - // belongs to either the left or right side of the - // pie ellipse. Hence, no slice will cross 90 or 270 - // point. - if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) { - JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice'); - exit(1); - } - - $p[] = array(); - - // Setup pre-calculated values - $rsa = $sa/180*M_PI; // to Rad - $rea = $ea/180*M_PI; // to Rad - $sinsa = sin($rsa); - $cossa = cos($rsa); - $sinea = sin($rea); - $cosea = cos($rea); - - // p[] is the points for the overall slice and - // pt[] is the points for the top pie - - // Angular step when approximating the arc with a polygon train. - $step = 0.05; - - if( $sa >= 270 ) { - if( $ea > 360 || ($ea > 0 && $ea <= 90) ) { - if( $ea > 0 && $ea <= 90 ) { - // Adjust angle to simplify conditions in loops - $rea += 2*M_PI; - } - - $p = array($xc,$yc,$xc,$yc+$z, - $xc+$w*$cossa,$z+$yc-$h*$sinsa); - $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); - - for( $a=$rsa; $a < 2*M_PI; $a += $step ) { - $tca = cos($a); - $tsa = sin($a); - $p[] = $xc+$w*$tca; - $p[] = $z+$yc-$h*$tsa; - $pt[] = $xc+$w*$tca; - $pt[] = $yc-$h*$tsa; - } - - $pt[] = $xc+$w; - $pt[] = $yc; - - $p[] = $xc+$w; - $p[] = $z+$yc; - $p[] = $xc+$w; - $p[] = $yc; - $p[] = $xc; - $p[] = $yc; - - for( $a=2*M_PI+$step; $a < $rea; $a += $step ) { - $pt[] = $xc + $w*cos($a); - $pt[] = $yc - $h*sin($a); - } - - $pt[] = $xc+$w*$cosea; - $pt[] = $yc-$h*$sinea; - $pt[] = $xc; - $pt[] = $yc; - - } - else { - $p = array($xc,$yc,$xc,$yc+$z, - $xc+$w*$cossa,$z+$yc-$h*$sinsa); - $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); - - $rea = $rea == 0.0 ? 2*M_PI : $rea; - for( $a=$rsa; $a < $rea; $a += $step ) { - $tca = cos($a); - $tsa = sin($a); - $p[] = $xc+$w*$tca; - $p[] = $z+$yc-$h*$tsa; - $pt[] = $xc+$w*$tca; - $pt[] = $yc-$h*$tsa; - } - - $pt[] = $xc+$w*$cosea; - $pt[] = $yc-$h*$sinea; - $pt[] = $xc; - $pt[] = $yc; - - $p[] = $xc+$w*$cosea; - $p[] = $z+$yc-$h*$sinea; - $p[] = $xc+$w*$cosea; - $p[] = $yc-$h*$sinea; - $p[] = $xc; - $p[] = $yc; - } - } - elseif( $sa >= 180 ) { - $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); - $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); - - for( $a=$rea; $a>$rsa; $a -= $step ) { - $tca = cos($a); - $tsa = sin($a); - $p[] = $xc+$w*$tca; - $p[] = $z+$yc-$h*$tsa; - $pt[] = $xc+$w*$tca; - $pt[] = $yc-$h*$tsa; - } - - $pt[] = $xc+$w*$cossa; - $pt[] = $yc-$h*$sinsa; - $pt[] = $xc; - $pt[] = $yc; - - $p[] = $xc+$w*$cossa; - $p[] = $z+$yc-$h*$sinsa; - $p[] = $xc+$w*$cossa; - $p[] = $yc-$h*$sinsa; - $p[] = $xc; - $p[] = $yc; - - } - elseif( $sa >= 90 ) { - if( $ea > 180 ) { - $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); - $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); - - for( $a=$rea; $a > M_PI; $a -= $step ) { - $tca = cos($a); - $tsa = sin($a); - $p[] = $xc+$w*$tca; - $p[] = $z + $yc - $h*$tsa; - $pt[] = $xc+$w*$tca; - $pt[] = $yc-$h*$tsa; - } - - $p[] = $xc-$w; - $p[] = $z+$yc; - $p[] = $xc-$w; - $p[] = $yc; - $p[] = $xc; - $p[] = $yc; - - $pt[] = $xc-$w; - $pt[] = $z+$yc; - $pt[] = $xc-$w; - $pt[] = $yc; - - for( $a=M_PI-$step; $a > $rsa; $a -= $step ) { - $pt[] = $xc + $w*cos($a); - $pt[] = $yc - $h*sin($a); - } - - $pt[] = $xc+$w*$cossa; - $pt[] = $yc-$h*$sinsa; - $pt[] = $xc; - $pt[] = $yc; - - } - else { // $sa >= 90 && $ea <= 180 - $p = array($xc,$yc,$xc,$yc+$z, - $xc+$w*$cosea,$z+$yc-$h*$sinea, - $xc+$w*$cosea,$yc-$h*$sinea, - $xc,$yc); - - $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); - - for( $a=$rea; $a>$rsa; $a -= $step ) { - $pt[] = $xc + $w*cos($a); - $pt[] = $yc - $h*sin($a); - } - - $pt[] = $xc+$w*$cossa; - $pt[] = $yc-$h*$sinsa; - $pt[] = $xc; - $pt[] = $yc; - - } - } - else { // sa > 0 && ea < 90 - - $p = array($xc,$yc,$xc,$yc+$z, - $xc+$w*$cossa,$z+$yc-$h*$sinsa, - $xc+$w*$cossa,$yc-$h*$sinsa, - $xc,$yc); - - $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); - - for( $a=$rsa; $a < $rea; $a += $step ) { - $pt[] = $xc + $w*cos($a); - $pt[] = $yc - $h*sin($a); - } - - $pt[] = $xc+$w*$cosea; - $pt[] = $yc-$h*$sinea; - $pt[] = $xc; - $pt[] = $yc; - } - - $img->PushColor($fillcolor.":".$shadow); - $img->FilledPolygon($p); - $img->PopColor(); - - $img->PushColor($fillcolor); - $img->FilledPolygon($pt); - $img->PopColor(); - } - - function SetStartAngle($aStart) { - if( $aStart < 0 || $aStart > 360 ) { - JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.'); - } - $this->startangle = $aStart; - } - - // Draw a 3D Pie - function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z, - $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) { - - //--------------------------------------------------------------------------- - // As usual the algorithm get more complicated than I originally - // envisioned. I believe that this is as simple as it is possible - // to do it with the features I want. It's a good exercise to start - // thinking on how to do this to convince your self that all this - // is really needed for the general case. - // - // The algorithm two draw 3D pies without "real 3D" is done in - // two steps. - // First imagine the pie cut in half through a thought line between - // 12'a clock and 6'a clock. It now easy to imagine that we can plot - // the individual slices for each half by starting with the topmost - // pie slice and continue down to 6'a clock. - // - // In the algortithm this is done in three principal steps - // Step 1. Do the knife cut to ensure by splitting slices that extends - // over the cut line. This is done by splitting the original slices into - // upto 3 subslices. - // Step 2. Find the top slice for each half - // Step 3. Draw the slices from top to bottom - // - // The thing that slightly complicates this scheme with all the - // angle comparisons below is that we can have an arbitrary start - // angle so we must take into account the different equivalence classes. - // For the same reason we must walk through the angle array in a - // modulo fashion. - // - // Limitations of algorithm: - // * A small exploded slice which crosses the 270 degree point - // will get slightly nagged close to the center due to the fact that - // we print the slices in Z-order and that the slice left part - // get printed first and might get slightly nagged by a larger - // slice on the right side just before the right part of the small - // slice. Not a major problem though. - //--------------------------------------------------------------------------- - - - // Determine the height of the ellippse which gives an - // indication of the inclination angle - $h = ($angle/90.0)*$d; - $sum = 0; - for($i=0; $i<count($data); ++$i ) { - $sum += $data[$i]; - } - - // Special optimization - if( $sum==0 ) return; - - if( $this->labeltype == 2 ) { - $this->adjusted_data = $this->AdjPercentage($data); - } - - // Setup the start - $accsum = 0; - $a = $startangle; - $a = $this->NormAngle($a); - - // - // Step 1 . Split all slices that crosses 90 or 270 - // - $idx=0; - $adjexplode=array(); - $numcolors = count($colors); - for($i=0; $i<count($data); ++$i, ++$idx ) { - $da = $data[$i]/$sum * 360; - - if( empty($this->explode_radius[$i]) ) { - $this->explode_radius[$i]=0; - } - - $expscale=1; - if( $aaoption == 1 ) { - $expscale=2; - } - - $la = $a + $da/2; - $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale, - $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale ); - $adjexplode[$idx] = $explode; - $labeldata[$i] = array($la,$explode[0],$explode[1]); - $originalangles[$i] = array($a,$a+$da); - - $ne = $this->NormAngle($a+$da); - if( $da <= 180 ) { - // If the slice size is <= 90 it can at maximum cut across - // one boundary (either 90 or 270) where it needs to be split - $split=-1; // no split - if( ($da<=90 && ($a <= 90 && $ne > 90)) || - (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) { - $split = 90; - } - elseif( ($da<=90 && ($a <= 270 && $ne > 270)) || - (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) { - $split = 270; - } - if( $split > 0 ) { // split in two - $angles[$idx] = array($a,$split); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - $angles[++$idx] = array($split,$ne); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - } - else { // no split - $angles[$idx] = array($a,$ne); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - } - } - else { - // da>180 - // Slice may, depending on position, cross one or two - // bonudaries - - if( $a < 90 ) $split = 90; - elseif( $a <= 270 ) $split = 270; - else $split = 90; - - $angles[$idx] = array($a,$split); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - //if( $a+$da > 360-$split ) { - // For slices larger than 270 degrees we might cross - // another boundary as well. This means that we must - // split the slice further. The comparison gets a little - // bit complicated since we must take into accound that - // a pie might have a startangle >0 and hence a slice might - // wrap around the 0 angle. - // Three cases: - // a) Slice starts before 90 and hence gets a split=90, but - // we must also check if we need to split at 270 - // b) Slice starts after 90 but before 270 and slices - // crosses 90 (after a wrap around of 0) - // c) If start is > 270 (hence the firstr split is at 90) - // and the slice is so large that it goes all the way - // around 270. - if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) { - $angles[++$idx] = array($split,360-$split); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - $angles[++$idx] = array(360-$split,$ne); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - } - else { - // Just a simple split to the previous decided - // angle. - $angles[++$idx] = array($split,$ne); - $adjcolors[$idx] = $colors[$i % $numcolors]; - $adjexplode[$idx] = $explode; - } - } - $a += $da; - $a = $this->NormAngle($a); - } - - // Total number of slices - $n = count($angles); - - for($i=0; $i<$n; ++$i) { - list($dbgs,$dbge) = $angles[$i]; - } - - // - // Step 2. Find start index (first pie that starts in upper left quadrant) - // - $minval = $angles[0][0]; - $min = 0; - for( $i=0; $i<$n; ++$i ) { - if( $angles[$i][0] < $minval ) { - $minval = $angles[$i][0]; - $min = $i; - } - } - $j = $min; - $cnt = 0; - while( $angles[$j][1] <= 90 ) { - $j++; - if( $j>=$n) { - $j=0; - } - if( $cnt > $n ) { - JpGraphError::RaiseL(14005); - //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index"); - } - ++$cnt; - } - $start = $j; - - // - // Step 3. Print slices in z-order - // - $cnt = 0; - - // First stroke all the slices between 90 and 270 (left half circle) - // counterclockwise - - while( $angles[$j][0] < 270 && $aaoption !== 2 ) { - - list($x,$y) = $adjexplode[$j]; - - $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], - $z,$adjcolors[$j],$shadow); - - $last = array($x,$y,$j); - - $j++; - if( $j >= $n ) $j=0; - if( $cnt > $n ) { - JpGraphError::RaiseL(14006); - //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); - } - ++$cnt; - } - - $slice_left = $n-$cnt; - $j=$start-1; - if($j<0) $j=$n-1; - $cnt = 0; - - // The stroke all slices from 90 to -90 (right half circle) - // clockwise - while( $cnt < $slice_left && $aaoption !== 2 ) { - - list($x,$y) = $adjexplode[$j]; - - $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], - $z,$adjcolors[$j],$shadow); - $j--; - if( $cnt > $n ) { - JpGraphError::RaiseL(14006); - //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); - } - if($j<0) $j=$n-1; - $cnt++; - } - - // Now do a special thing. Stroke the last slice on the left - // halfcircle one more time. This is needed in the case where - // the slice close to 270 have been exploded. In that case the - // part of the slice close to the center of the pie might be - // slightly nagged. - if( $aaoption !== 2 ) - $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0], - $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow); - - - if( $aaoption !== 1 ) { - // Now print possible labels and add csim - $this->value->ApplyFont($img); - $margin = $img->GetFontHeight()/2 + $this->value->margin ; - for($i=0; $i < count($data); ++$i ) { - $la = $labeldata[$i][0]; - $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj; - $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj; - if( $this->ilabelposadj >= 1.0 ) { - if( $la > 180 && $la < 360 ) $y += $z; - } - if( $this->labeltype == 0 ) { - if( $sum > 0 ) $l = 100*$data[$i]/$sum; - else $l = 0; - } - elseif( $this->labeltype == 1 ) { - $l = $data[$i]; - } - else { - $l = $this->adjusted_data[$i]; - } - if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) { - $l=sprintf($this->labels[$i],$l); - } - - $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z); - - $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z, - $originalangles[$i][0],$originalangles[$i][1]); - } - } - - // - // Finally add potential lines in pie - // - - if( $edgecolor=="" || $aaoption !== 0 ) return; - - $accsum = 0; - $a = $startangle; - $a = $this->NormAngle($a); - - $a *= M_PI/180.0; - - $idx=0; - $img->PushColor($edgecolor); - $img->SetLineWeight($edgeweight); - - $fulledge = true; - for($i=0; $i < count($data) && $fulledge; ++$i ) { - if( empty($this->explode_radius[$i]) ) { - $this->explode_radius[$i]=0; - } - if( $this->explode_radius[$i] > 0 ) { - $fulledge = false; - } - } - - - for($i=0; $i < count($data); ++$i, ++$idx ) { - - $da = $data[$i]/$sum * 2*M_PI; - $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor, - $this->explode_radius[$i],$fulledge); - $a += $da; - } - $img->PopColor(); - } - - function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) { - $step = 0.02; - - if( $exploderadius > 0 ) { - $la = ($sa+$ea)/2; - $xc += $exploderadius*cos($la); - $yc -= $exploderadius*sin($la) * ($h/$w) ; - - } - - $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa)); - - for($a=$sa; $a < $ea; $a += $step ) { - $p[] = $xc + $w*cos($a); - $p[] = $yc - $h*sin($a); - } - - $p[] = $xc+$w*cos($ea); - $p[] = $yc-$h*sin($ea); - $p[] = $xc; - $p[] = $yc; - - $img->SetColor($edgecolor); - $img->Polygon($p); - - // Unfortunately we can't really draw the full edge around the whole of - // of the slice if any of the slices are exploded. The reason is that - // this algorithm is to simply. There are cases where the edges will - // "overwrite" other slices when they have been exploded. - // Doing the full, proper 3D hidden lines stiff is actually quite - // tricky. So for exploded pies we only draw the top edge. Not perfect - // but the "real" solution is much more complicated. - if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) { - - if($sa < M_PI && $ea > M_PI) { - $sa = M_PI; - } - - if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) { - $ea = 2*M_PI; - } - - if( $sa >= M_PI && $ea <= 2*M_PI ) { - $p = array($xc + $w*cos($sa),$yc - $h*sin($sa), - $xc + $w*cos($sa),$z + $yc - $h*sin($sa)); - - for($a=$sa+$step; $a < $ea; $a += $step ) { - $p[] = $xc + $w*cos($a); - $p[] = $z + $yc - $h*sin($a); - } - $p[] = $xc + $w*cos($ea); - $p[] = $z + $yc - $h*sin($ea); - $p[] = $xc + $w*cos($ea); - $p[] = $yc - $h*sin($ea); - $img->SetColor($edgecolor); - $img->Polygon($p); - } - } - } - - function Stroke($img,$aaoption=0) { - $n = count($this->data); - - // If user hasn't set the colors use the theme array - if( $this->setslicecolors==null ) { - $colors = array_keys($img->rgb->rgb_table); - sort($colors); - $idx_a=$this->themearr[$this->theme]; - $ca = array(); - $m = count($idx_a); - for($i=0; $i < $m; ++$i) { - $ca[$i] = $colors[$idx_a[$i]]; - } - $ca = array_reverse(array_slice($ca,0,$n)); - } - else { - $ca = $this->setslicecolors; - } - - - if( $this->posx <= 1 && $this->posx > 0 ) { - $xc = round($this->posx*$img->width); - } - else { - $xc = $this->posx ; - } - - if( $this->posy <= 1 && $this->posy > 0 ) { - $yc = round($this->posy*$img->height); - } - else { - $yc = $this->posy ; - } - - if( $this->radius <= 1 ) { - $width = floor($this->radius*min($img->width,$img->height)); - // Make sure that the pie doesn't overflow the image border - // The 0.9 factor is simply an extra margin to leave some space - // between the pie an the border of the image. - $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9)); - } - else { - $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ; - } - - // Add a sanity check for width - if( $width < 1 ) { - JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0"); - } - - // Establish a thickness. By default the thickness is a fifth of the - // pie slice width (=pie radius) but since the perspective depends - // on the inclination angle we use some heuristics to make the edge - // slightly thicker the less the angle. - - // Has user specified an absolute thickness? In that case use - // that instead - - if( $this->iThickness ) { - $thick = $this->iThickness; - $thick *= ($aaoption === 1 ? 2 : 1 ); - } - else { - $thick = $width/12; - } - $a = $this->angle; - - if( $a <= 30 ) $thick *= 1.6; - elseif( $a <= 40 ) $thick *= 1.4; - elseif( $a <= 50 ) $thick *= 1.2; - elseif( $a <= 60 ) $thick *= 1.0; - elseif( $a <= 70 ) $thick *= 0.8; - elseif( $a <= 80 ) $thick *= 0.7; - else $thick *= 0.6; - - $thick = floor($thick); - - if( $this->explode_all ) { - for($i=0; $i < $n; ++$i) - $this->explode_radius[$i]=$this->explode_r; - } - - $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle, - $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight); - - // Adjust title position - if( $aaoption != 1 ) { - $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom"); - $this->title->Stroke($img); - } - } - - //--------------- - // PRIVATE METHODS - - // Position the labels of each slice - function StrokeLabels($label,$img,$a,$xp,$yp,$z) { - $this->value->halign="left"; - $this->value->valign="top"; - - // Position the axis title. - // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text - // that intersects with the extension of the corresponding axis. The code looks a little - // bit messy but this is really the only way of having a reasonable position of the - // axis titles. - $this->value->ApplyFont($img); - $h=$img->GetTextHeight($label); - // For numeric values the format of the display value - // must be taken into account - if( is_numeric($label) ) { - if( $label >= 0 ) { - $w=$img->GetTextWidth(sprintf($this->value->format,$label)); - } - else { - $w=$img->GetTextWidth(sprintf($this->value->negformat,$label)); - } - } - else { - $w=$img->GetTextWidth($label); - } - - while( $a > 2*M_PI ) { - $a -= 2*M_PI; - } - - if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0; - if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI; - if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1; - if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI); - - if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI; - if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI); - if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1; - if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI); - if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0; - - $x = round($xp-$dx*$w); - $y = round($yp-$dy*$h); - - // Mark anchor point for debugging - /* - $img->SetColor('red'); - $img->Line($xp-10,$yp,$xp+10,$yp); - $img->Line($xp,$yp-10,$xp,$yp+10); - */ - - $oldmargin = $this->value->margin; - $this->value->margin=0; - $this->value->Stroke($img,$label,$x,$y); - $this->value->margin=$oldmargin; - - } -} // Class - -/* EOF */ -?> |