summaryrefslogtreecommitdiff
path: root/html/jpgraph/jpgraph_pie3d.php
diff options
context:
space:
mode:
Diffstat (limited to 'html/jpgraph/jpgraph_pie3d.php')
-rw-r--r--html/jpgraph/jpgraph_pie3d.php933
1 files changed, 933 insertions, 0 deletions
diff --git a/html/jpgraph/jpgraph_pie3d.php b/html/jpgraph/jpgraph_pie3d.php
new file mode 100644
index 0000000..52b8631
--- /dev/null
+++ b/html/jpgraph/jpgraph_pie3d.php
@@ -0,0 +1,933 @@
+<?php
+/*=======================================================================
+ // File: JPGRAPH_PIE3D.PHP
+ // Description: 3D Pie plot extension for JpGraph
+ // Created: 2001-03-24
+ // Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $
+ //
+ // Copyright (c) Asial Corporation. All rights reserved.
+ //========================================================================
+ */
+
+//===================================================
+// CLASS PiePlot3D
+// Description: Plots a 3D pie with a specified projection
+// angle between 20 and 70 degrees.
+//===================================================
+class PiePlot3D extends PiePlot {
+ private $labelhintcolor="red",$showlabelhint=true;
+ private $angle=50;
+ private $edgecolor="", $edgeweight=1;
+ private $iThickness=false;
+
+ //---------------
+ // CONSTRUCTOR
+ function __construct($data) {
+ $this->radius = 0.5;
+ $this->data = $data;
+ $this->title = new Text("");
+ $this->title->SetFont(FF_FONT1,FS_BOLD);
+ $this->value = new DisplayValue();
+ $this->value->Show();
+ $this->value->SetFormat('%.0f%%');
+ }
+
+ //---------------
+ // PUBLIC METHODS
+
+ // Set label arrays
+ function SetLegends($aLegend) {
+ $this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
+ }
+
+ function SetSliceColors($aColors) {
+ $this->setslicecolors = $aColors;
+ }
+
+ function Legend($aGraph) {
+ parent::Legend($aGraph);
+ $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
+ }
+
+ function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
+ $this->csimtargets = $aTargets;
+ $this->csimwintargets = $aWinTargets;
+ $this->csimalts = $aAlts;
+ }
+
+ // Should the slices be separated by a line? If color is specified as "" no line
+ // will be used to separate pie slices.
+ function SetEdge($aColor='black',$aWeight=1) {
+ $this->edgecolor = $aColor;
+ $this->edgeweight = $aWeight;
+ }
+
+ // Specify projection angle for 3D in degrees
+ // Must be between 20 and 70 degrees
+ function SetAngle($a) {
+ if( $a<5 || $a>90 ) {
+ JpGraphError::RaiseL(14002);
+ //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
+ }
+ else {
+ $this->angle = $a;
+ }
+ }
+
+ function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
+
+ $sa *= M_PI/180;
+ $ea *= M_PI/180;
+
+ //add coordinates of the centre to the map
+ $coords = "$xc, $yc";
+
+ //add coordinates of the first point on the arc to the map
+ $xp = floor($width*cos($sa)/2+$xc);
+ $yp = floor($yc-$height*sin($sa)/2);
+ $coords.= ", $xp, $yp";
+
+ //If on the front half, add the thickness offset
+ if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
+ $yp = floor($yp+$thick);
+ $coords.= ", $xp, $yp";
+ }
+
+ //add coordinates every 0.2 radians
+ $a=$sa+0.2;
+ while ($a<$ea) {
+ $xp = floor($width*cos($a)/2+$xc);
+ if ($a >= M_PI && $a <= 2*M_PI*1.01) {
+ $yp = floor($yc-($height*sin($a)/2)+$thick);
+ } else {
+ $yp = floor($yc-$height*sin($a)/2);
+ }
+ $coords.= ", $xp, $yp";
+ $a += 0.2;
+ }
+
+ //Add the last point on the arc
+ $xp = floor($width*cos($ea)/2+$xc);
+ $yp = floor($yc-$height*sin($ea)/2);
+
+
+ if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
+ $coords.= ", $xp, ".floor($yp+$thick);
+ }
+ $coords.= ", $xp, $yp";
+ $alt='';
+
+ if( !empty($this->csimtargets[$i]) ) {
+ $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\"";
+
+ if( !empty($this->csimwintargets[$i]) ) {
+ $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
+ }
+
+ if( !empty($this->csimalts[$i]) ) {
+ $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
+ $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
+ }
+ $this->csimareas .= " />\n";
+ }
+
+ }
+
+ function SetLabels($aLabels,$aLblPosAdj="auto") {
+ $this->labels = $aLabels;
+ $this->ilabelposadj=$aLblPosAdj;
+ }
+
+
+ // Distance from the pie to the labels
+ function SetLabelMargin($m) {
+ $this->value->SetMargin($m);
+ }
+
+ // Show a thin line from the pie to the label for a specific slice
+ function ShowLabelHint($f=true) {
+ $this->showlabelhint=$f;
+ }
+
+ // Set color of hint line to label for each slice
+ function SetLabelHintColor($c) {
+ $this->labelhintcolor=$c;
+ }
+
+ function SetHeight($aHeight) {
+ $this->iThickness = $aHeight;
+ }
+
+
+ // Normalize Angle between 0-360
+ function NormAngle($a) {
+ // Normalize anle to 0 to 2M_PI
+ //
+ if( $a > 0 ) {
+ while($a > 360) $a -= 360;
+ }
+ else {
+ while($a < 0) $a += 360;
+ }
+ if( $a < 0 )
+ $a = 360 + $a;
+
+ if( $a == 360 ) $a=0;
+ return $a;
+ }
+
+
+
+ // Draw one 3D pie slice at position ($xc,$yc) with height $z
+ function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
+
+ // Due to the way the 3D Pie algorithm works we are
+ // guaranteed that any slice we get into this method
+ // belongs to either the left or right side of the
+ // pie ellipse. Hence, no slice will cross 90 or 270
+ // point.
+ if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
+ JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
+ exit(1);
+ }
+
+ $p[] = array();
+
+ // Setup pre-calculated values
+ $rsa = $sa/180*M_PI; // to Rad
+ $rea = $ea/180*M_PI; // to Rad
+ $sinsa = sin($rsa);
+ $cossa = cos($rsa);
+ $sinea = sin($rea);
+ $cosea = cos($rea);
+
+ // p[] is the points for the overall slice and
+ // pt[] is the points for the top pie
+
+ // Angular step when approximating the arc with a polygon train.
+ $step = 0.05;
+
+ if( $sa >= 270 ) {
+ if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
+ if( $ea > 0 && $ea <= 90 ) {
+ // Adjust angle to simplify conditions in loops
+ $rea += 2*M_PI;
+ }
+
+ $p = array($xc,$yc,$xc,$yc+$z,
+ $xc+$w*$cossa,$z+$yc-$h*$sinsa);
+ $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
+
+ for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
+ $tca = cos($a);
+ $tsa = sin($a);
+ $p[] = $xc+$w*$tca;
+ $p[] = $z+$yc-$h*$tsa;
+ $pt[] = $xc+$w*$tca;
+ $pt[] = $yc-$h*$tsa;
+ }
+
+ $pt[] = $xc+$w;
+ $pt[] = $yc;
+
+ $p[] = $xc+$w;
+ $p[] = $z+$yc;
+ $p[] = $xc+$w;
+ $p[] = $yc;
+ $p[] = $xc;
+ $p[] = $yc;
+
+ for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
+ $pt[] = $xc + $w*cos($a);
+ $pt[] = $yc - $h*sin($a);
+ }
+
+ $pt[] = $xc+$w*$cosea;
+ $pt[] = $yc-$h*$sinea;
+ $pt[] = $xc;
+ $pt[] = $yc;
+
+ }
+ else {
+ $p = array($xc,$yc,$xc,$yc+$z,
+ $xc+$w*$cossa,$z+$yc-$h*$sinsa);
+ $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
+
+ $rea = $rea == 0.0 ? 2*M_PI : $rea;
+ for( $a=$rsa; $a < $rea; $a += $step ) {
+ $tca = cos($a);
+ $tsa = sin($a);
+ $p[] = $xc+$w*$tca;
+ $p[] = $z+$yc-$h*$tsa;
+ $pt[] = $xc+$w*$tca;
+ $pt[] = $yc-$h*$tsa;
+ }
+
+ $pt[] = $xc+$w*$cosea;
+ $pt[] = $yc-$h*$sinea;
+ $pt[] = $xc;
+ $pt[] = $yc;
+
+ $p[] = $xc+$w*$cosea;
+ $p[] = $z+$yc-$h*$sinea;
+ $p[] = $xc+$w*$cosea;
+ $p[] = $yc-$h*$sinea;
+ $p[] = $xc;
+ $p[] = $yc;
+ }
+ }
+ elseif( $sa >= 180 ) {
+ $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
+ $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
+
+ for( $a=$rea; $a>$rsa; $a -= $step ) {
+ $tca = cos($a);
+ $tsa = sin($a);
+ $p[] = $xc+$w*$tca;
+ $p[] = $z+$yc-$h*$tsa;
+ $pt[] = $xc+$w*$tca;
+ $pt[] = $yc-$h*$tsa;
+ }
+
+ $pt[] = $xc+$w*$cossa;
+ $pt[] = $yc-$h*$sinsa;
+ $pt[] = $xc;
+ $pt[] = $yc;
+
+ $p[] = $xc+$w*$cossa;
+ $p[] = $z+$yc-$h*$sinsa;
+ $p[] = $xc+$w*$cossa;
+ $p[] = $yc-$h*$sinsa;
+ $p[] = $xc;
+ $p[] = $yc;
+
+ }
+ elseif( $sa >= 90 ) {
+ if( $ea > 180 ) {
+ $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
+ $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
+
+ for( $a=$rea; $a > M_PI; $a -= $step ) {
+ $tca = cos($a);
+ $tsa = sin($a);
+ $p[] = $xc+$w*$tca;
+ $p[] = $z + $yc - $h*$tsa;
+ $pt[] = $xc+$w*$tca;
+ $pt[] = $yc-$h*$tsa;
+ }
+
+ $p[] = $xc-$w;
+ $p[] = $z+$yc;
+ $p[] = $xc-$w;
+ $p[] = $yc;
+ $p[] = $xc;
+ $p[] = $yc;
+
+ $pt[] = $xc-$w;
+ $pt[] = $z+$yc;
+ $pt[] = $xc-$w;
+ $pt[] = $yc;
+
+ for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
+ $pt[] = $xc + $w*cos($a);
+ $pt[] = $yc - $h*sin($a);
+ }
+
+ $pt[] = $xc+$w*$cossa;
+ $pt[] = $yc-$h*$sinsa;
+ $pt[] = $xc;
+ $pt[] = $yc;
+
+ }
+ else { // $sa >= 90 && $ea <= 180
+ $p = array($xc,$yc,$xc,$yc+$z,
+ $xc+$w*$cosea,$z+$yc-$h*$sinea,
+ $xc+$w*$cosea,$yc-$h*$sinea,
+ $xc,$yc);
+
+ $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
+
+ for( $a=$rea; $a>$rsa; $a -= $step ) {
+ $pt[] = $xc + $w*cos($a);
+ $pt[] = $yc - $h*sin($a);
+ }
+
+ $pt[] = $xc+$w*$cossa;
+ $pt[] = $yc-$h*$sinsa;
+ $pt[] = $xc;
+ $pt[] = $yc;
+
+ }
+ }
+ else { // sa > 0 && ea < 90
+
+ $p = array($xc,$yc,$xc,$yc+$z,
+ $xc+$w*$cossa,$z+$yc-$h*$sinsa,
+ $xc+$w*$cossa,$yc-$h*$sinsa,
+ $xc,$yc);
+
+ $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
+
+ for( $a=$rsa; $a < $rea; $a += $step ) {
+ $pt[] = $xc + $w*cos($a);
+ $pt[] = $yc - $h*sin($a);
+ }
+
+ $pt[] = $xc+$w*$cosea;
+ $pt[] = $yc-$h*$sinea;
+ $pt[] = $xc;
+ $pt[] = $yc;
+ }
+
+ $img->PushColor($fillcolor.":".$shadow);
+ $img->FilledPolygon($p);
+ $img->PopColor();
+
+ $img->PushColor($fillcolor);
+ $img->FilledPolygon($pt);
+ $img->PopColor();
+ }
+
+ function SetStartAngle($aStart) {
+ if( $aStart < 0 || $aStart > 360 ) {
+ JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
+ }
+ $this->startangle = $aStart;
+ }
+
+ // Draw a 3D Pie
+ function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
+ $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
+
+ //---------------------------------------------------------------------------
+ // As usual the algorithm get more complicated than I originally
+ // envisioned. I believe that this is as simple as it is possible
+ // to do it with the features I want. It's a good exercise to start
+ // thinking on how to do this to convince your self that all this
+ // is really needed for the general case.
+ //
+ // The algorithm two draw 3D pies without "real 3D" is done in
+ // two steps.
+ // First imagine the pie cut in half through a thought line between
+ // 12'a clock and 6'a clock. It now easy to imagine that we can plot
+ // the individual slices for each half by starting with the topmost
+ // pie slice and continue down to 6'a clock.
+ //
+ // In the algortithm this is done in three principal steps
+ // Step 1. Do the knife cut to ensure by splitting slices that extends
+ // over the cut line. This is done by splitting the original slices into
+ // upto 3 subslices.
+ // Step 2. Find the top slice for each half
+ // Step 3. Draw the slices from top to bottom
+ //
+ // The thing that slightly complicates this scheme with all the
+ // angle comparisons below is that we can have an arbitrary start
+ // angle so we must take into account the different equivalence classes.
+ // For the same reason we must walk through the angle array in a
+ // modulo fashion.
+ //
+ // Limitations of algorithm:
+ // * A small exploded slice which crosses the 270 degree point
+ // will get slightly nagged close to the center due to the fact that
+ // we print the slices in Z-order and that the slice left part
+ // get printed first and might get slightly nagged by a larger
+ // slice on the right side just before the right part of the small
+ // slice. Not a major problem though.
+ //---------------------------------------------------------------------------
+
+
+ // Determine the height of the ellippse which gives an
+ // indication of the inclination angle
+ $h = ($angle/90.0)*$d;
+ $sum = 0;
+ for($i=0; $i<count($data); ++$i ) {
+ $sum += $data[$i];
+ }
+
+ // Special optimization
+ if( $sum==0 ) return;
+
+ if( $this->labeltype == 2 ) {
+ $this->adjusted_data = $this->AdjPercentage($data);
+ }
+
+ // Setup the start
+ $accsum = 0;
+ $a = $startangle;
+ $a = $this->NormAngle($a);
+
+ //
+ // Step 1 . Split all slices that crosses 90 or 270
+ //
+ $idx=0;
+ $adjexplode=array();
+ $numcolors = count($colors);
+ for($i=0; $i<count($data); ++$i, ++$idx ) {
+ $da = $data[$i]/$sum * 360;
+
+ if( empty($this->explode_radius[$i]) ) {
+ $this->explode_radius[$i]=0;
+ }
+
+ $expscale=1;
+ if( $aaoption == 1 ) {
+ $expscale=2;
+ }
+
+ $la = $a + $da/2;
+ $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
+ $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
+ $adjexplode[$idx] = $explode;
+ $labeldata[$i] = array($la,$explode[0],$explode[1]);
+ $originalangles[$i] = array($a,$a+$da);
+
+ $ne = $this->NormAngle($a+$da);
+ if( $da <= 180 ) {
+ // If the slice size is <= 90 it can at maximum cut across
+ // one boundary (either 90 or 270) where it needs to be split
+ $split=-1; // no split
+ if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
+ (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
+ $split = 90;
+ }
+ elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
+ (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
+ $split = 270;
+ }
+ if( $split > 0 ) { // split in two
+ $angles[$idx] = array($a,$split);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ $angles[++$idx] = array($split,$ne);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ }
+ else { // no split
+ $angles[$idx] = array($a,$ne);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ }
+ }
+ else {
+ // da>180
+ // Slice may, depending on position, cross one or two
+ // bonudaries
+
+ if( $a < 90 ) $split = 90;
+ elseif( $a <= 270 ) $split = 270;
+ else $split = 90;
+
+ $angles[$idx] = array($a,$split);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ //if( $a+$da > 360-$split ) {
+ // For slices larger than 270 degrees we might cross
+ // another boundary as well. This means that we must
+ // split the slice further. The comparison gets a little
+ // bit complicated since we must take into accound that
+ // a pie might have a startangle >0 and hence a slice might
+ // wrap around the 0 angle.
+ // Three cases:
+ // a) Slice starts before 90 and hence gets a split=90, but
+ // we must also check if we need to split at 270
+ // b) Slice starts after 90 but before 270 and slices
+ // crosses 90 (after a wrap around of 0)
+ // c) If start is > 270 (hence the firstr split is at 90)
+ // and the slice is so large that it goes all the way
+ // around 270.
+ if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) {
+ $angles[++$idx] = array($split,360-$split);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ $angles[++$idx] = array(360-$split,$ne);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ }
+ else {
+ // Just a simple split to the previous decided
+ // angle.
+ $angles[++$idx] = array($split,$ne);
+ $adjcolors[$idx] = $colors[$i % $numcolors];
+ $adjexplode[$idx] = $explode;
+ }
+ }
+ $a += $da;
+ $a = $this->NormAngle($a);
+ }
+
+ // Total number of slices
+ $n = count($angles);
+
+ for($i=0; $i<$n; ++$i) {
+ list($dbgs,$dbge) = $angles[$i];
+ }
+
+ //
+ // Step 2. Find start index (first pie that starts in upper left quadrant)
+ //
+ $minval = $angles[0][0];
+ $min = 0;
+ for( $i=0; $i<$n; ++$i ) {
+ if( $angles[$i][0] < $minval ) {
+ $minval = $angles[$i][0];
+ $min = $i;
+ }
+ }
+ $j = $min;
+ $cnt = 0;
+ while( $angles[$j][1] <= 90 ) {
+ $j++;
+ if( $j>=$n) {
+ $j=0;
+ }
+ if( $cnt > $n ) {
+ JpGraphError::RaiseL(14005);
+ //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
+ }
+ ++$cnt;
+ }
+ $start = $j;
+
+ //
+ // Step 3. Print slices in z-order
+ //
+ $cnt = 0;
+
+ // First stroke all the slices between 90 and 270 (left half circle)
+ // counterclockwise
+
+ while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
+
+ list($x,$y) = $adjexplode[$j];
+
+ $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
+ $z,$adjcolors[$j],$shadow);
+
+ $last = array($x,$y,$j);
+
+ $j++;
+ if( $j >= $n ) $j=0;
+ if( $cnt > $n ) {
+ JpGraphError::RaiseL(14006);
+ //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
+ }
+ ++$cnt;
+ }
+
+ $slice_left = $n-$cnt;
+ $j=$start-1;
+ if($j<0) $j=$n-1;
+ $cnt = 0;
+
+ // The stroke all slices from 90 to -90 (right half circle)
+ // clockwise
+ while( $cnt < $slice_left && $aaoption !== 2 ) {
+
+ list($x,$y) = $adjexplode[$j];
+
+ $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
+ $z,$adjcolors[$j],$shadow);
+ $j--;
+ if( $cnt > $n ) {
+ JpGraphError::RaiseL(14006);
+ //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
+ }
+ if($j<0) $j=$n-1;
+ $cnt++;
+ }
+
+ // Now do a special thing. Stroke the last slice on the left
+ // halfcircle one more time. This is needed in the case where
+ // the slice close to 270 have been exploded. In that case the
+ // part of the slice close to the center of the pie might be
+ // slightly nagged.
+ if( $aaoption !== 2 )
+ $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
+ $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
+
+
+ if( $aaoption !== 1 ) {
+ // Now print possible labels and add csim
+ $this->value->ApplyFont($img);
+ $margin = $img->GetFontHeight()/2 + $this->value->margin ;
+ for($i=0; $i < count($data); ++$i ) {
+ $la = $labeldata[$i][0];
+ $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
+ $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
+ if( $this->ilabelposadj >= 1.0 ) {
+ if( $la > 180 && $la < 360 ) $y += $z;
+ }
+ if( $this->labeltype == 0 ) {
+ if( $sum > 0 ) $l = 100*$data[$i]/$sum;
+ else $l = 0;
+ }
+ elseif( $this->labeltype == 1 ) {
+ $l = $data[$i];
+ }
+ else {
+ $l = $this->adjusted_data[$i];
+ }
+ if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) {
+ $l=sprintf($this->labels[$i],$l);
+ }
+
+ $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
+
+ $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
+ $originalangles[$i][0],$originalangles[$i][1]);
+ }
+ }
+
+ //
+ // Finally add potential lines in pie
+ //
+
+ if( $edgecolor=="" || $aaoption !== 0 ) return;
+
+ $accsum = 0;
+ $a = $startangle;
+ $a = $this->NormAngle($a);
+
+ $a *= M_PI/180.0;
+
+ $idx=0;
+ $img->PushColor($edgecolor);
+ $img->SetLineWeight($edgeweight);
+
+ $fulledge = true;
+ for($i=0; $i < count($data) && $fulledge; ++$i ) {
+ if( empty($this->explode_radius[$i]) ) {
+ $this->explode_radius[$i]=0;
+ }
+ if( $this->explode_radius[$i] > 0 ) {
+ $fulledge = false;
+ }
+ }
+
+
+ for($i=0; $i < count($data); ++$i, ++$idx ) {
+
+ $da = $data[$i]/$sum * 2*M_PI;
+ $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
+ $this->explode_radius[$i],$fulledge);
+ $a += $da;
+ }
+ $img->PopColor();
+ }
+
+ function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
+ $step = 0.02;
+
+ if( $exploderadius > 0 ) {
+ $la = ($sa+$ea)/2;
+ $xc += $exploderadius*cos($la);
+ $yc -= $exploderadius*sin($la) * ($h/$w) ;
+
+ }
+
+ $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
+
+ for($a=$sa; $a < $ea; $a += $step ) {
+ $p[] = $xc + $w*cos($a);
+ $p[] = $yc - $h*sin($a);
+ }
+
+ $p[] = $xc+$w*cos($ea);
+ $p[] = $yc-$h*sin($ea);
+ $p[] = $xc;
+ $p[] = $yc;
+
+ $img->SetColor($edgecolor);
+ $img->Polygon($p);
+
+ // Unfortunately we can't really draw the full edge around the whole of
+ // of the slice if any of the slices are exploded. The reason is that
+ // this algorithm is to simply. There are cases where the edges will
+ // "overwrite" other slices when they have been exploded.
+ // Doing the full, proper 3D hidden lines stiff is actually quite
+ // tricky. So for exploded pies we only draw the top edge. Not perfect
+ // but the "real" solution is much more complicated.
+ if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
+
+ if($sa < M_PI && $ea > M_PI) {
+ $sa = M_PI;
+ }
+
+ if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) {
+ $ea = 2*M_PI;
+ }
+
+ if( $sa >= M_PI && $ea <= 2*M_PI ) {
+ $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
+ $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
+
+ for($a=$sa+$step; $a < $ea; $a += $step ) {
+ $p[] = $xc + $w*cos($a);
+ $p[] = $z + $yc - $h*sin($a);
+ }
+ $p[] = $xc + $w*cos($ea);
+ $p[] = $z + $yc - $h*sin($ea);
+ $p[] = $xc + $w*cos($ea);
+ $p[] = $yc - $h*sin($ea);
+ $img->SetColor($edgecolor);
+ $img->Polygon($p);
+ }
+ }
+ }
+
+ function Stroke($img,$aaoption=0) {
+ $n = count($this->data);
+
+ // If user hasn't set the colors use the theme array
+ if( $this->setslicecolors==null ) {
+ $colors = array_keys($img->rgb->rgb_table);
+ sort($colors);
+ $idx_a=$this->themearr[$this->theme];
+ $ca = array();
+ $m = count($idx_a);
+ for($i=0; $i < $m; ++$i) {
+ $ca[$i] = $colors[$idx_a[$i]];
+ }
+ $ca = array_reverse(array_slice($ca,0,$n));
+ }
+ else {
+ $ca = $this->setslicecolors;
+ }
+
+
+ if( $this->posx <= 1 && $this->posx > 0 ) {
+ $xc = round($this->posx*$img->width);
+ }
+ else {
+ $xc = $this->posx ;
+ }
+
+ if( $this->posy <= 1 && $this->posy > 0 ) {
+ $yc = round($this->posy*$img->height);
+ }
+ else {
+ $yc = $this->posy ;
+ }
+
+ if( $this->radius <= 1 ) {
+ $width = floor($this->radius*min($img->width,$img->height));
+ // Make sure that the pie doesn't overflow the image border
+ // The 0.9 factor is simply an extra margin to leave some space
+ // between the pie an the border of the image.
+ $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
+ }
+ else {
+ $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
+ }
+
+ // Add a sanity check for width
+ if( $width < 1 ) {
+ JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
+ }
+
+ // Establish a thickness. By default the thickness is a fifth of the
+ // pie slice width (=pie radius) but since the perspective depends
+ // on the inclination angle we use some heuristics to make the edge
+ // slightly thicker the less the angle.
+
+ // Has user specified an absolute thickness? In that case use
+ // that instead
+
+ if( $this->iThickness ) {
+ $thick = $this->iThickness;
+ $thick *= ($aaoption === 1 ? 2 : 1 );
+ }
+ else {
+ $thick = $width/12;
+ }
+ $a = $this->angle;
+
+ if( $a <= 30 ) $thick *= 1.6;
+ elseif( $a <= 40 ) $thick *= 1.4;
+ elseif( $a <= 50 ) $thick *= 1.2;
+ elseif( $a <= 60 ) $thick *= 1.0;
+ elseif( $a <= 70 ) $thick *= 0.8;
+ elseif( $a <= 80 ) $thick *= 0.7;
+ else $thick *= 0.6;
+
+ $thick = floor($thick);
+
+ if( $this->explode_all ) {
+ for($i=0; $i < $n; ++$i)
+ $this->explode_radius[$i]=$this->explode_r;
+ }
+
+ $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
+ $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
+
+ // Adjust title position
+ if( $aaoption != 1 ) {
+ $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
+ $this->title->Stroke($img);
+ }
+ }
+
+ //---------------
+ // PRIVATE METHODS
+
+ // Position the labels of each slice
+ function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
+ $this->value->halign="left";
+ $this->value->valign="top";
+
+ // Position the axis title.
+ // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
+ // that intersects with the extension of the corresponding axis. The code looks a little
+ // bit messy but this is really the only way of having a reasonable position of the
+ // axis titles.
+ $this->value->ApplyFont($img);
+ $h=$img->GetTextHeight($label);
+ // For numeric values the format of the display value
+ // must be taken into account
+ if( is_numeric($label) ) {
+ if( $label >= 0 ) {
+ $w=$img->GetTextWidth(sprintf($this->value->format,$label));
+ }
+ else {
+ $w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
+ }
+ }
+ else {
+ $w=$img->GetTextWidth($label);
+ }
+
+ while( $a > 2*M_PI ) {
+ $a -= 2*M_PI;
+ }
+
+ if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
+ if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
+ if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
+ if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
+
+ if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
+ if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
+ if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
+ if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
+ if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
+
+ $x = round($xp-$dx*$w);
+ $y = round($yp-$dy*$h);
+
+ // Mark anchor point for debugging
+ /*
+ $img->SetColor('red');
+ $img->Line($xp-10,$yp,$xp+10,$yp);
+ $img->Line($xp,$yp-10,$xp,$yp+10);
+ */
+
+ $oldmargin = $this->value->margin;
+ $this->value->margin=0;
+ $this->value->Stroke($img,$label,$x,$y);
+ $this->value->margin=$oldmargin;
+
+ }
+} // Class
+
+/* EOF */
+?>