diff options
Diffstat (limited to 'html/jpgraph/jpgraph_pie3d.php')
-rw-r--r-- | html/jpgraph/jpgraph_pie3d.php | 933 |
1 files changed, 933 insertions, 0 deletions
diff --git a/html/jpgraph/jpgraph_pie3d.php b/html/jpgraph/jpgraph_pie3d.php new file mode 100644 index 0000000..52b8631 --- /dev/null +++ b/html/jpgraph/jpgraph_pie3d.php @@ -0,0 +1,933 @@ +<?php +/*======================================================================= + // File: JPGRAPH_PIE3D.PHP + // Description: 3D Pie plot extension for JpGraph + // Created: 2001-03-24 + // Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $ + // + // Copyright (c) Asial Corporation. All rights reserved. + //======================================================================== + */ + +//=================================================== +// CLASS PiePlot3D +// Description: Plots a 3D pie with a specified projection +// angle between 20 and 70 degrees. +//=================================================== +class PiePlot3D extends PiePlot { + private $labelhintcolor="red",$showlabelhint=true; + private $angle=50; + private $edgecolor="", $edgeweight=1; + private $iThickness=false; + + //--------------- + // CONSTRUCTOR + function __construct($data) { + $this->radius = 0.5; + $this->data = $data; + $this->title = new Text(""); + $this->title->SetFont(FF_FONT1,FS_BOLD); + $this->value = new DisplayValue(); + $this->value->Show(); + $this->value->SetFormat('%.0f%%'); + } + + //--------------- + // PUBLIC METHODS + + // Set label arrays + function SetLegends($aLegend) { + $this->legends = array_reverse(array_slice($aLegend,0,count($this->data))); + } + + function SetSliceColors($aColors) { + $this->setslicecolors = $aColors; + } + + function Legend($aGraph) { + parent::Legend($aGraph); + $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol); + } + + function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') { + $this->csimtargets = $aTargets; + $this->csimwintargets = $aWinTargets; + $this->csimalts = $aAlts; + } + + // Should the slices be separated by a line? If color is specified as "" no line + // will be used to separate pie slices. + function SetEdge($aColor='black',$aWeight=1) { + $this->edgecolor = $aColor; + $this->edgeweight = $aWeight; + } + + // Specify projection angle for 3D in degrees + // Must be between 20 and 70 degrees + function SetAngle($a) { + if( $a<5 || $a>90 ) { + JpGraphError::RaiseL(14002); + //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees."); + } + else { + $this->angle = $a; + } + } + + function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle + + $sa *= M_PI/180; + $ea *= M_PI/180; + + //add coordinates of the centre to the map + $coords = "$xc, $yc"; + + //add coordinates of the first point on the arc to the map + $xp = floor($width*cos($sa)/2+$xc); + $yp = floor($yc-$height*sin($sa)/2); + $coords.= ", $xp, $yp"; + + //If on the front half, add the thickness offset + if ($sa >= M_PI && $sa <= 2*M_PI*1.01) { + $yp = floor($yp+$thick); + $coords.= ", $xp, $yp"; + } + + //add coordinates every 0.2 radians + $a=$sa+0.2; + while ($a<$ea) { + $xp = floor($width*cos($a)/2+$xc); + if ($a >= M_PI && $a <= 2*M_PI*1.01) { + $yp = floor($yc-($height*sin($a)/2)+$thick); + } else { + $yp = floor($yc-$height*sin($a)/2); + } + $coords.= ", $xp, $yp"; + $a += 0.2; + } + + //Add the last point on the arc + $xp = floor($width*cos($ea)/2+$xc); + $yp = floor($yc-$height*sin($ea)/2); + + + if ($ea >= M_PI && $ea <= 2*M_PI*1.01) { + $coords.= ", $xp, ".floor($yp+$thick); + } + $coords.= ", $xp, $yp"; + $alt=''; + + if( !empty($this->csimtargets[$i]) ) { + $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\""; + + if( !empty($this->csimwintargets[$i]) ) { + $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" "; + } + + if( !empty($this->csimalts[$i]) ) { + $tmp=sprintf($this->csimalts[$i],$this->data[$i]); + $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" "; + } + $this->csimareas .= " />\n"; + } + + } + + function SetLabels($aLabels,$aLblPosAdj="auto") { + $this->labels = $aLabels; + $this->ilabelposadj=$aLblPosAdj; + } + + + // Distance from the pie to the labels + function SetLabelMargin($m) { + $this->value->SetMargin($m); + } + + // Show a thin line from the pie to the label for a specific slice + function ShowLabelHint($f=true) { + $this->showlabelhint=$f; + } + + // Set color of hint line to label for each slice + function SetLabelHintColor($c) { + $this->labelhintcolor=$c; + } + + function SetHeight($aHeight) { + $this->iThickness = $aHeight; + } + + + // Normalize Angle between 0-360 + function NormAngle($a) { + // Normalize anle to 0 to 2M_PI + // + if( $a > 0 ) { + while($a > 360) $a -= 360; + } + else { + while($a < 0) $a += 360; + } + if( $a < 0 ) + $a = 360 + $a; + + if( $a == 360 ) $a=0; + return $a; + } + + + + // Draw one 3D pie slice at position ($xc,$yc) with height $z + function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) { + + // Due to the way the 3D Pie algorithm works we are + // guaranteed that any slice we get into this method + // belongs to either the left or right side of the + // pie ellipse. Hence, no slice will cross 90 or 270 + // point. + if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) { + JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice'); + exit(1); + } + + $p[] = array(); + + // Setup pre-calculated values + $rsa = $sa/180*M_PI; // to Rad + $rea = $ea/180*M_PI; // to Rad + $sinsa = sin($rsa); + $cossa = cos($rsa); + $sinea = sin($rea); + $cosea = cos($rea); + + // p[] is the points for the overall slice and + // pt[] is the points for the top pie + + // Angular step when approximating the arc with a polygon train. + $step = 0.05; + + if( $sa >= 270 ) { + if( $ea > 360 || ($ea > 0 && $ea <= 90) ) { + if( $ea > 0 && $ea <= 90 ) { + // Adjust angle to simplify conditions in loops + $rea += 2*M_PI; + } + + $p = array($xc,$yc,$xc,$yc+$z, + $xc+$w*$cossa,$z+$yc-$h*$sinsa); + $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); + + for( $a=$rsa; $a < 2*M_PI; $a += $step ) { + $tca = cos($a); + $tsa = sin($a); + $p[] = $xc+$w*$tca; + $p[] = $z+$yc-$h*$tsa; + $pt[] = $xc+$w*$tca; + $pt[] = $yc-$h*$tsa; + } + + $pt[] = $xc+$w; + $pt[] = $yc; + + $p[] = $xc+$w; + $p[] = $z+$yc; + $p[] = $xc+$w; + $p[] = $yc; + $p[] = $xc; + $p[] = $yc; + + for( $a=2*M_PI+$step; $a < $rea; $a += $step ) { + $pt[] = $xc + $w*cos($a); + $pt[] = $yc - $h*sin($a); + } + + $pt[] = $xc+$w*$cosea; + $pt[] = $yc-$h*$sinea; + $pt[] = $xc; + $pt[] = $yc; + + } + else { + $p = array($xc,$yc,$xc,$yc+$z, + $xc+$w*$cossa,$z+$yc-$h*$sinsa); + $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); + + $rea = $rea == 0.0 ? 2*M_PI : $rea; + for( $a=$rsa; $a < $rea; $a += $step ) { + $tca = cos($a); + $tsa = sin($a); + $p[] = $xc+$w*$tca; + $p[] = $z+$yc-$h*$tsa; + $pt[] = $xc+$w*$tca; + $pt[] = $yc-$h*$tsa; + } + + $pt[] = $xc+$w*$cosea; + $pt[] = $yc-$h*$sinea; + $pt[] = $xc; + $pt[] = $yc; + + $p[] = $xc+$w*$cosea; + $p[] = $z+$yc-$h*$sinea; + $p[] = $xc+$w*$cosea; + $p[] = $yc-$h*$sinea; + $p[] = $xc; + $p[] = $yc; + } + } + elseif( $sa >= 180 ) { + $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); + $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); + + for( $a=$rea; $a>$rsa; $a -= $step ) { + $tca = cos($a); + $tsa = sin($a); + $p[] = $xc+$w*$tca; + $p[] = $z+$yc-$h*$tsa; + $pt[] = $xc+$w*$tca; + $pt[] = $yc-$h*$tsa; + } + + $pt[] = $xc+$w*$cossa; + $pt[] = $yc-$h*$sinsa; + $pt[] = $xc; + $pt[] = $yc; + + $p[] = $xc+$w*$cossa; + $p[] = $z+$yc-$h*$sinsa; + $p[] = $xc+$w*$cossa; + $p[] = $yc-$h*$sinsa; + $p[] = $xc; + $p[] = $yc; + + } + elseif( $sa >= 90 ) { + if( $ea > 180 ) { + $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); + $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); + + for( $a=$rea; $a > M_PI; $a -= $step ) { + $tca = cos($a); + $tsa = sin($a); + $p[] = $xc+$w*$tca; + $p[] = $z + $yc - $h*$tsa; + $pt[] = $xc+$w*$tca; + $pt[] = $yc-$h*$tsa; + } + + $p[] = $xc-$w; + $p[] = $z+$yc; + $p[] = $xc-$w; + $p[] = $yc; + $p[] = $xc; + $p[] = $yc; + + $pt[] = $xc-$w; + $pt[] = $z+$yc; + $pt[] = $xc-$w; + $pt[] = $yc; + + for( $a=M_PI-$step; $a > $rsa; $a -= $step ) { + $pt[] = $xc + $w*cos($a); + $pt[] = $yc - $h*sin($a); + } + + $pt[] = $xc+$w*$cossa; + $pt[] = $yc-$h*$sinsa; + $pt[] = $xc; + $pt[] = $yc; + + } + else { // $sa >= 90 && $ea <= 180 + $p = array($xc,$yc,$xc,$yc+$z, + $xc+$w*$cosea,$z+$yc-$h*$sinea, + $xc+$w*$cosea,$yc-$h*$sinea, + $xc,$yc); + + $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); + + for( $a=$rea; $a>$rsa; $a -= $step ) { + $pt[] = $xc + $w*cos($a); + $pt[] = $yc - $h*sin($a); + } + + $pt[] = $xc+$w*$cossa; + $pt[] = $yc-$h*$sinsa; + $pt[] = $xc; + $pt[] = $yc; + + } + } + else { // sa > 0 && ea < 90 + + $p = array($xc,$yc,$xc,$yc+$z, + $xc+$w*$cossa,$z+$yc-$h*$sinsa, + $xc+$w*$cossa,$yc-$h*$sinsa, + $xc,$yc); + + $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); + + for( $a=$rsa; $a < $rea; $a += $step ) { + $pt[] = $xc + $w*cos($a); + $pt[] = $yc - $h*sin($a); + } + + $pt[] = $xc+$w*$cosea; + $pt[] = $yc-$h*$sinea; + $pt[] = $xc; + $pt[] = $yc; + } + + $img->PushColor($fillcolor.":".$shadow); + $img->FilledPolygon($p); + $img->PopColor(); + + $img->PushColor($fillcolor); + $img->FilledPolygon($pt); + $img->PopColor(); + } + + function SetStartAngle($aStart) { + if( $aStart < 0 || $aStart > 360 ) { + JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.'); + } + $this->startangle = $aStart; + } + + // Draw a 3D Pie + function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z, + $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) { + + //--------------------------------------------------------------------------- + // As usual the algorithm get more complicated than I originally + // envisioned. I believe that this is as simple as it is possible + // to do it with the features I want. It's a good exercise to start + // thinking on how to do this to convince your self that all this + // is really needed for the general case. + // + // The algorithm two draw 3D pies without "real 3D" is done in + // two steps. + // First imagine the pie cut in half through a thought line between + // 12'a clock and 6'a clock. It now easy to imagine that we can plot + // the individual slices for each half by starting with the topmost + // pie slice and continue down to 6'a clock. + // + // In the algortithm this is done in three principal steps + // Step 1. Do the knife cut to ensure by splitting slices that extends + // over the cut line. This is done by splitting the original slices into + // upto 3 subslices. + // Step 2. Find the top slice for each half + // Step 3. Draw the slices from top to bottom + // + // The thing that slightly complicates this scheme with all the + // angle comparisons below is that we can have an arbitrary start + // angle so we must take into account the different equivalence classes. + // For the same reason we must walk through the angle array in a + // modulo fashion. + // + // Limitations of algorithm: + // * A small exploded slice which crosses the 270 degree point + // will get slightly nagged close to the center due to the fact that + // we print the slices in Z-order and that the slice left part + // get printed first and might get slightly nagged by a larger + // slice on the right side just before the right part of the small + // slice. Not a major problem though. + //--------------------------------------------------------------------------- + + + // Determine the height of the ellippse which gives an + // indication of the inclination angle + $h = ($angle/90.0)*$d; + $sum = 0; + for($i=0; $i<count($data); ++$i ) { + $sum += $data[$i]; + } + + // Special optimization + if( $sum==0 ) return; + + if( $this->labeltype == 2 ) { + $this->adjusted_data = $this->AdjPercentage($data); + } + + // Setup the start + $accsum = 0; + $a = $startangle; + $a = $this->NormAngle($a); + + // + // Step 1 . Split all slices that crosses 90 or 270 + // + $idx=0; + $adjexplode=array(); + $numcolors = count($colors); + for($i=0; $i<count($data); ++$i, ++$idx ) { + $da = $data[$i]/$sum * 360; + + if( empty($this->explode_radius[$i]) ) { + $this->explode_radius[$i]=0; + } + + $expscale=1; + if( $aaoption == 1 ) { + $expscale=2; + } + + $la = $a + $da/2; + $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale, + $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale ); + $adjexplode[$idx] = $explode; + $labeldata[$i] = array($la,$explode[0],$explode[1]); + $originalangles[$i] = array($a,$a+$da); + + $ne = $this->NormAngle($a+$da); + if( $da <= 180 ) { + // If the slice size is <= 90 it can at maximum cut across + // one boundary (either 90 or 270) where it needs to be split + $split=-1; // no split + if( ($da<=90 && ($a <= 90 && $ne > 90)) || + (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) { + $split = 90; + } + elseif( ($da<=90 && ($a <= 270 && $ne > 270)) || + (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) { + $split = 270; + } + if( $split > 0 ) { // split in two + $angles[$idx] = array($a,$split); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + $angles[++$idx] = array($split,$ne); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + } + else { // no split + $angles[$idx] = array($a,$ne); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + } + } + else { + // da>180 + // Slice may, depending on position, cross one or two + // bonudaries + + if( $a < 90 ) $split = 90; + elseif( $a <= 270 ) $split = 270; + else $split = 90; + + $angles[$idx] = array($a,$split); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + //if( $a+$da > 360-$split ) { + // For slices larger than 270 degrees we might cross + // another boundary as well. This means that we must + // split the slice further. The comparison gets a little + // bit complicated since we must take into accound that + // a pie might have a startangle >0 and hence a slice might + // wrap around the 0 angle. + // Three cases: + // a) Slice starts before 90 and hence gets a split=90, but + // we must also check if we need to split at 270 + // b) Slice starts after 90 but before 270 and slices + // crosses 90 (after a wrap around of 0) + // c) If start is > 270 (hence the firstr split is at 90) + // and the slice is so large that it goes all the way + // around 270. + if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) { + $angles[++$idx] = array($split,360-$split); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + $angles[++$idx] = array(360-$split,$ne); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + } + else { + // Just a simple split to the previous decided + // angle. + $angles[++$idx] = array($split,$ne); + $adjcolors[$idx] = $colors[$i % $numcolors]; + $adjexplode[$idx] = $explode; + } + } + $a += $da; + $a = $this->NormAngle($a); + } + + // Total number of slices + $n = count($angles); + + for($i=0; $i<$n; ++$i) { + list($dbgs,$dbge) = $angles[$i]; + } + + // + // Step 2. Find start index (first pie that starts in upper left quadrant) + // + $minval = $angles[0][0]; + $min = 0; + for( $i=0; $i<$n; ++$i ) { + if( $angles[$i][0] < $minval ) { + $minval = $angles[$i][0]; + $min = $i; + } + } + $j = $min; + $cnt = 0; + while( $angles[$j][1] <= 90 ) { + $j++; + if( $j>=$n) { + $j=0; + } + if( $cnt > $n ) { + JpGraphError::RaiseL(14005); + //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index"); + } + ++$cnt; + } + $start = $j; + + // + // Step 3. Print slices in z-order + // + $cnt = 0; + + // First stroke all the slices between 90 and 270 (left half circle) + // counterclockwise + + while( $angles[$j][0] < 270 && $aaoption !== 2 ) { + + list($x,$y) = $adjexplode[$j]; + + $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], + $z,$adjcolors[$j],$shadow); + + $last = array($x,$y,$j); + + $j++; + if( $j >= $n ) $j=0; + if( $cnt > $n ) { + JpGraphError::RaiseL(14006); + //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); + } + ++$cnt; + } + + $slice_left = $n-$cnt; + $j=$start-1; + if($j<0) $j=$n-1; + $cnt = 0; + + // The stroke all slices from 90 to -90 (right half circle) + // clockwise + while( $cnt < $slice_left && $aaoption !== 2 ) { + + list($x,$y) = $adjexplode[$j]; + + $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], + $z,$adjcolors[$j],$shadow); + $j--; + if( $cnt > $n ) { + JpGraphError::RaiseL(14006); + //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); + } + if($j<0) $j=$n-1; + $cnt++; + } + + // Now do a special thing. Stroke the last slice on the left + // halfcircle one more time. This is needed in the case where + // the slice close to 270 have been exploded. In that case the + // part of the slice close to the center of the pie might be + // slightly nagged. + if( $aaoption !== 2 ) + $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0], + $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow); + + + if( $aaoption !== 1 ) { + // Now print possible labels and add csim + $this->value->ApplyFont($img); + $margin = $img->GetFontHeight()/2 + $this->value->margin ; + for($i=0; $i < count($data); ++$i ) { + $la = $labeldata[$i][0]; + $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj; + $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj; + if( $this->ilabelposadj >= 1.0 ) { + if( $la > 180 && $la < 360 ) $y += $z; + } + if( $this->labeltype == 0 ) { + if( $sum > 0 ) $l = 100*$data[$i]/$sum; + else $l = 0; + } + elseif( $this->labeltype == 1 ) { + $l = $data[$i]; + } + else { + $l = $this->adjusted_data[$i]; + } + if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) { + $l=sprintf($this->labels[$i],$l); + } + + $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z); + + $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z, + $originalangles[$i][0],$originalangles[$i][1]); + } + } + + // + // Finally add potential lines in pie + // + + if( $edgecolor=="" || $aaoption !== 0 ) return; + + $accsum = 0; + $a = $startangle; + $a = $this->NormAngle($a); + + $a *= M_PI/180.0; + + $idx=0; + $img->PushColor($edgecolor); + $img->SetLineWeight($edgeweight); + + $fulledge = true; + for($i=0; $i < count($data) && $fulledge; ++$i ) { + if( empty($this->explode_radius[$i]) ) { + $this->explode_radius[$i]=0; + } + if( $this->explode_radius[$i] > 0 ) { + $fulledge = false; + } + } + + + for($i=0; $i < count($data); ++$i, ++$idx ) { + + $da = $data[$i]/$sum * 2*M_PI; + $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor, + $this->explode_radius[$i],$fulledge); + $a += $da; + } + $img->PopColor(); + } + + function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) { + $step = 0.02; + + if( $exploderadius > 0 ) { + $la = ($sa+$ea)/2; + $xc += $exploderadius*cos($la); + $yc -= $exploderadius*sin($la) * ($h/$w) ; + + } + + $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa)); + + for($a=$sa; $a < $ea; $a += $step ) { + $p[] = $xc + $w*cos($a); + $p[] = $yc - $h*sin($a); + } + + $p[] = $xc+$w*cos($ea); + $p[] = $yc-$h*sin($ea); + $p[] = $xc; + $p[] = $yc; + + $img->SetColor($edgecolor); + $img->Polygon($p); + + // Unfortunately we can't really draw the full edge around the whole of + // of the slice if any of the slices are exploded. The reason is that + // this algorithm is to simply. There are cases where the edges will + // "overwrite" other slices when they have been exploded. + // Doing the full, proper 3D hidden lines stiff is actually quite + // tricky. So for exploded pies we only draw the top edge. Not perfect + // but the "real" solution is much more complicated. + if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) { + + if($sa < M_PI && $ea > M_PI) { + $sa = M_PI; + } + + if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) { + $ea = 2*M_PI; + } + + if( $sa >= M_PI && $ea <= 2*M_PI ) { + $p = array($xc + $w*cos($sa),$yc - $h*sin($sa), + $xc + $w*cos($sa),$z + $yc - $h*sin($sa)); + + for($a=$sa+$step; $a < $ea; $a += $step ) { + $p[] = $xc + $w*cos($a); + $p[] = $z + $yc - $h*sin($a); + } + $p[] = $xc + $w*cos($ea); + $p[] = $z + $yc - $h*sin($ea); + $p[] = $xc + $w*cos($ea); + $p[] = $yc - $h*sin($ea); + $img->SetColor($edgecolor); + $img->Polygon($p); + } + } + } + + function Stroke($img,$aaoption=0) { + $n = count($this->data); + + // If user hasn't set the colors use the theme array + if( $this->setslicecolors==null ) { + $colors = array_keys($img->rgb->rgb_table); + sort($colors); + $idx_a=$this->themearr[$this->theme]; + $ca = array(); + $m = count($idx_a); + for($i=0; $i < $m; ++$i) { + $ca[$i] = $colors[$idx_a[$i]]; + } + $ca = array_reverse(array_slice($ca,0,$n)); + } + else { + $ca = $this->setslicecolors; + } + + + if( $this->posx <= 1 && $this->posx > 0 ) { + $xc = round($this->posx*$img->width); + } + else { + $xc = $this->posx ; + } + + if( $this->posy <= 1 && $this->posy > 0 ) { + $yc = round($this->posy*$img->height); + } + else { + $yc = $this->posy ; + } + + if( $this->radius <= 1 ) { + $width = floor($this->radius*min($img->width,$img->height)); + // Make sure that the pie doesn't overflow the image border + // The 0.9 factor is simply an extra margin to leave some space + // between the pie an the border of the image. + $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9)); + } + else { + $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ; + } + + // Add a sanity check for width + if( $width < 1 ) { + JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0"); + } + + // Establish a thickness. By default the thickness is a fifth of the + // pie slice width (=pie radius) but since the perspective depends + // on the inclination angle we use some heuristics to make the edge + // slightly thicker the less the angle. + + // Has user specified an absolute thickness? In that case use + // that instead + + if( $this->iThickness ) { + $thick = $this->iThickness; + $thick *= ($aaoption === 1 ? 2 : 1 ); + } + else { + $thick = $width/12; + } + $a = $this->angle; + + if( $a <= 30 ) $thick *= 1.6; + elseif( $a <= 40 ) $thick *= 1.4; + elseif( $a <= 50 ) $thick *= 1.2; + elseif( $a <= 60 ) $thick *= 1.0; + elseif( $a <= 70 ) $thick *= 0.8; + elseif( $a <= 80 ) $thick *= 0.7; + else $thick *= 0.6; + + $thick = floor($thick); + + if( $this->explode_all ) { + for($i=0; $i < $n; ++$i) + $this->explode_radius[$i]=$this->explode_r; + } + + $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle, + $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight); + + // Adjust title position + if( $aaoption != 1 ) { + $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom"); + $this->title->Stroke($img); + } + } + + //--------------- + // PRIVATE METHODS + + // Position the labels of each slice + function StrokeLabels($label,$img,$a,$xp,$yp,$z) { + $this->value->halign="left"; + $this->value->valign="top"; + + // Position the axis title. + // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text + // that intersects with the extension of the corresponding axis. The code looks a little + // bit messy but this is really the only way of having a reasonable position of the + // axis titles. + $this->value->ApplyFont($img); + $h=$img->GetTextHeight($label); + // For numeric values the format of the display value + // must be taken into account + if( is_numeric($label) ) { + if( $label >= 0 ) { + $w=$img->GetTextWidth(sprintf($this->value->format,$label)); + } + else { + $w=$img->GetTextWidth(sprintf($this->value->negformat,$label)); + } + } + else { + $w=$img->GetTextWidth($label); + } + + while( $a > 2*M_PI ) { + $a -= 2*M_PI; + } + + if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0; + if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI; + if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1; + if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI); + + if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI; + if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI); + if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1; + if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI); + if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0; + + $x = round($xp-$dx*$w); + $y = round($yp-$dy*$h); + + // Mark anchor point for debugging + /* + $img->SetColor('red'); + $img->Line($xp-10,$yp,$xp+10,$yp); + $img->Line($xp,$yp-10,$xp,$yp+10); + */ + + $oldmargin = $this->value->margin; + $this->value->margin=0; + $this->value->Stroke($img,$label,$x,$y); + $this->value->margin=$oldmargin; + + } +} // Class + +/* EOF */ +?> |