summaryrefslogtreecommitdiff
path: root/html/jpgraph/jpgraph_regstat.php
diff options
context:
space:
mode:
Diffstat (limited to 'html/jpgraph/jpgraph_regstat.php')
-rw-r--r--html/jpgraph/jpgraph_regstat.php215
1 files changed, 215 insertions, 0 deletions
diff --git a/html/jpgraph/jpgraph_regstat.php b/html/jpgraph/jpgraph_regstat.php
new file mode 100644
index 0000000..0f6c96b
--- /dev/null
+++ b/html/jpgraph/jpgraph_regstat.php
@@ -0,0 +1,215 @@
+<?php
+/*=======================================================================
+ // File: JPGRAPH_REGSTAT.PHP
+ // Description: Regression and statistical analysis helper classes
+ // Created: 2002-12-01
+ // Ver: $Id: jpgraph_regstat.php 1131 2009-03-11 20:08:24Z ljp $
+ //
+ // Copyright (c) Asial Corporation. All rights reserved.
+ //========================================================================
+ */
+
+//------------------------------------------------------------------------
+// CLASS Spline
+// Create a new data array from an existing data array but with more points.
+// The new points are interpolated using a cubic spline algorithm
+//------------------------------------------------------------------------
+class Spline {
+ // 3:rd degree polynom approximation
+
+ private $xdata,$ydata; // Data vectors
+ private $y2; // 2:nd derivate of ydata
+ private $n=0;
+
+ function __construct($xdata,$ydata) {
+ $this->y2 = array();
+ $this->xdata = $xdata;
+ $this->ydata = $ydata;
+
+ $n = count($ydata);
+ $this->n = $n;
+ if( $this->n !== count($xdata) ) {
+ JpGraphError::RaiseL(19001);
+ //('Spline: Number of X and Y coordinates must be the same');
+ }
+
+ // Natural spline 2:derivate == 0 at endpoints
+ $this->y2[0] = 0.0;
+ $this->y2[$n-1] = 0.0;
+ $delta[0] = 0.0;
+
+ // Calculate 2:nd derivate
+ for($i=1; $i < $n-1; ++$i) {
+ $d = ($xdata[$i+1]-$xdata[$i-1]);
+ if( $d == 0 ) {
+ JpGraphError::RaiseL(19002);
+ //('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
+ }
+ $s = ($xdata[$i]-$xdata[$i-1])/$d;
+ $p = $s*$this->y2[$i-1]+2.0;
+ $this->y2[$i] = ($s-1.0)/$p;
+ $delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
+ ($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
+ $delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
+ }
+
+ // Backward substitution
+ for( $j=$n-2; $j >= 0; --$j ) {
+ $this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
+ }
+ }
+
+ // Return the two new data vectors
+ function Get($num=50) {
+ $n = $this->n ;
+ $step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
+ $xnew=array();
+ $ynew=array();
+ $xnew[0] = $this->xdata[0];
+ $ynew[0] = $this->ydata[0];
+ for( $j=1; $j < $num; ++$j ) {
+ $xnew[$j] = $xnew[0]+$j*$step;
+ $ynew[$j] = $this->Interpolate($xnew[$j]);
+ }
+ return array($xnew,$ynew);
+ }
+
+ // Return a single interpolated Y-value from an x value
+ function Interpolate($xpoint) {
+
+ $max = $this->n-1;
+ $min = 0;
+
+ // Binary search to find interval
+ while( $max-$min > 1 ) {
+ $k = ($max+$min) / 2;
+ if( $this->xdata[$k] > $xpoint )
+ $max=$k;
+ else
+ $min=$k;
+ }
+
+ // Each interval is interpolated by a 3:degree polynom function
+ $h = $this->xdata[$max]-$this->xdata[$min];
+
+ if( $h == 0 ) {
+ JpGraphError::RaiseL(19002);
+ //('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
+ }
+
+
+ $a = ($this->xdata[$max]-$xpoint)/$h;
+ $b = ($xpoint-$this->xdata[$min])/$h;
+ return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
+ (($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
+ }
+}
+
+//------------------------------------------------------------------------
+// CLASS Bezier
+// Create a new data array from a number of control points
+//------------------------------------------------------------------------
+class Bezier {
+ /**
+ * @author Thomas Despoix, openXtrem company
+ * @license released under QPL
+ * @abstract Bezier interoplated point generation,
+ * computed from control points data sets, based on Paul Bourke algorithm :
+ * http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index2.html
+ */
+ private $datax = array();
+ private $datay = array();
+ private $n=0;
+
+ function __construct($datax, $datay, $attraction_factor = 1) {
+ // Adding control point multiple time will raise their attraction power over the curve
+ $this->n = count($datax);
+ if( $this->n !== count($datay) ) {
+ JpGraphError::RaiseL(19003);
+ //('Bezier: Number of X and Y coordinates must be the same');
+ }
+ $idx=0;
+ foreach($datax as $datumx) {
+ for ($i = 0; $i < $attraction_factor; $i++) {
+ $this->datax[$idx++] = $datumx;
+ }
+ }
+ $idx=0;
+ foreach($datay as $datumy) {
+ for ($i = 0; $i < $attraction_factor; $i++) {
+ $this->datay[$idx++] = $datumy;
+ }
+ }
+ $this->n *= $attraction_factor;
+ }
+
+ /**
+ * Return a set of data points that specifies the bezier curve with $steps points
+ * @param $steps Number of new points to return
+ * @return array($datax, $datay)
+ */
+ function Get($steps) {
+ $datax = array();
+ $datay = array();
+ for ($i = 0; $i < $steps; $i++) {
+ list($datumx, $datumy) = $this->GetPoint((double) $i / (double) $steps);
+ $datax[$i] = $datumx;
+ $datay[$i] = $datumy;
+ }
+
+ $datax[] = end($this->datax);
+ $datay[] = end($this->datay);
+
+ return array($datax, $datay);
+ }
+
+ /**
+ * Return one point on the bezier curve. $mu is the position on the curve where $mu is in the
+ * range 0 $mu < 1 where 0 is tha start point and 1 is the end point. Note that every newly computed
+ * point depends on all the existing points
+ *
+ * @param $mu Position on the bezier curve
+ * @return array($x, $y)
+ */
+ function GetPoint($mu) {
+ $n = $this->n - 1;
+ $k = 0;
+ $kn = 0;
+ $nn = 0;
+ $nkn = 0;
+ $blend = 0.0;
+ $newx = 0.0;
+ $newy = 0.0;
+
+ $muk = 1.0;
+ $munk = (double) pow(1-$mu,(double) $n);
+
+ for ($k = 0; $k <= $n; $k++) {
+ $nn = $n;
+ $kn = $k;
+ $nkn = $n - $k;
+ $blend = $muk * $munk;
+ $muk *= $mu;
+ $munk /= (1-$mu);
+ while ($nn >= 1) {
+ $blend *= $nn;
+ $nn--;
+ if ($kn > 1) {
+ $blend /= (double) $kn;
+ $kn--;
+ }
+ if ($nkn > 1) {
+ $blend /= (double) $nkn;
+ $nkn--;
+ }
+ }
+ $newx += $this->datax[$k] * $blend;
+ $newy += $this->datay[$k] * $blend;
+ }
+
+ return array($newx, $newy);
+ }
+}
+
+// EOF
+?>